首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   2篇
化学   10篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2011年   2篇
  2007年   1篇
排序方式: 共有10条查询结果,搜索用时 31 毫秒
1
1.
The macrocyclic core of the cytotoxic marine natural product callyspongiolide ( 1 ) was forged by ring-closing alkyne metathesis (RCAM) of an ynoate precursor using a molybdenum alkylidyne complex endowed with triarylsilanolate ligands as the catalyst. This result is remarkable in view of the failed attempts documented in the literature at converting electron deficient alkynes with the aid of more classical catalysts. The subsequent Z-selective semi-reduction of the resulting cycloalkyne by hydrogenation over nickel boride required careful optimization in order to minimize overreduction and competing dehalogenation of the compound's alkenyl iodide terminus as needed for final attachment of the side chain of 1 by Sonogashira coupling. The required cyclization precursor itself was prepared via Kocienski olefination.  相似文献   
2.
3.
4.
Molybdenum alkylidyne complexes with a trisilanolate podand ligand framework (“canopy catalysts”) are the arguably most selective catalysts for alkyne metathesis known to date. Among them, complex 1 a endowed with a fence of lateral methyl substituents on the silicon linkers is the most reactive, although fairly high loadings are required in certain applications. It is now shown that this catalyst decomposes readily via a bimolecular pathway that engages the Mo≡CR entities in a stoichiometric triple-bond metathesis event to furnish RC≡CR and the corresponding dinuclear complex, 8 , with a Mo≡Mo core. In addition to the regular analytical techniques, 95Mo NMR was used to confirm this unusual outcome. This rapid degradation mechanism is largely avoided by increasing the size of the peripheral substituents on silicon, without unduly compromising the activity of the resulting complexes. When chemically challenged, however, canopy catalysts can open the apparently somewhat strained tripodal ligand cages; this reorganization leads to the formation of cyclo-tetrameric arrays composed of four metal alkylidyne units linked together via one silanol arm of the ligand backbone. The analogous tungsten alkylidyne complex 6 , endowed with a tripodal tris-alkoxide (rather than siloxide) ligand framework, is even more susceptible to such a controlled and reversible cyclo-oligomerization. The structures of the resulting giant macrocyclic ensembles were established by single-crystal X-ray diffraction.  相似文献   
5.
The {N2} unit of aryldiazonium salts undergoes unusually facile triple‐bond metathesis on treatment with molybdenum or tungsten alkylidyne ate complexes endowed with triphenylsilanolate ligands. The reaction transforms the alkylidyne unit into a nitrile and the aryldiazonium entity into an imido ligand on the metal center, as unambiguously confirmed by X‐ray structure analysis of two representative examples. A tungsten nitride ate complex is shown to react analogously. Since the bonding situation of an aryldiazonium salt is similar to that of metal complexes with end‐on‐bound dinitrogen, in which {N2}→M σ donation is dominant and electron back donation minimal, the metathesis described herein is thought to be a conceptually novel strategy toward dinitrogen cleavage devoid of any redox steps and, therefore, orthogonal to the established methods.  相似文献   
6.
The Pd0/AuI mediated [C1+C2] cross-coupling reactions of [W(≡CBr)(CO)2(Tp*)] (Tp*=hydrotris(dimethylpyrazolyl)borate) and trimethylsilylethynyl-substituted arenes afford new polycyclic aromatic hydrocarbon propargylidynes [W(≡CC≡CR)(CO)2(Tp*)] (R=9-anthracenyl, 1-pyrenyl). The strategy extends to the first bis(propargylidyne) and bis(pentadiynylidyne) complexes bridged by phenyl or anthracenyl spacers, and to a tetrakis(propargylidyne) connected through a pyrene core.  相似文献   
7.
8.
9.
10.
Terminal acetylenes are amongst the most problematic substrates for alkyne metathesis because they tend to undergo rapid polymerization on contact with a metal alkylidyne. The molybdenum complex 3 endowed with triphenylsilanolate ligands, however, is capable of inducing surprisingly effective cross‐metathesis reactions of terminal alkyl acetylenes with propynyl(trimethyl)silane to give products of type R1?C?CSiMe . This unconventional way of introducing a silyl substituent onto an alkyne terminus complements the conventional tactics of deprotonation/silylation and excels as an orthogonal way of alkyne protecting group chemistry for substrates bearing base‐sensitive functionalities. Moreover, it is shown that even terminal aryl acetylenes can be cross‐metathesized with internal alkyne partners. These unprecedented transformations are compatible with various functional groups. The need to suppress acetylene formation, which seems to be a particularly effective catalyst poison, is also discussed.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号