首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   412篇
  免费   55篇
  国内免费   65篇
化学   519篇
综合类   1篇
物理学   12篇
  2023年   9篇
  2022年   34篇
  2021年   45篇
  2020年   117篇
  2019年   68篇
  2018年   23篇
  2017年   21篇
  2016年   39篇
  2015年   16篇
  2014年   15篇
  2013年   25篇
  2012年   20篇
  2011年   17篇
  2010年   16篇
  2009年   13篇
  2008年   8篇
  2007年   8篇
  2006年   12篇
  2005年   5篇
  2004年   1篇
  2003年   4篇
  2002年   5篇
  2000年   4篇
  1999年   2篇
  1998年   2篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
排序方式: 共有532条查询结果,搜索用时 15 毫秒
1.
2.
羧基功能化的聚[(9,9-二辛基芴基-2,7-二基)-co-(1,4-苯并-{2,1′,3}-噻二唑)]聚合物点(PFBT-COOH)在无外加共反应试剂的条件下具有高的电致化学发光(ECL)信号,且过氧化氢(H_2O_2)对其ECL具有高效猝灭作用。采用PFBT-COOH修饰玻碳电极,进一步交联葡萄糖氧化酶(GOD)以构建酶传感器(GOD/PFBT-COOH/GCE)。随着检测底液中葡萄糖浓度的增加,葡萄糖在GOD催化下原位产生的H_2O_2量增加,导致传感器的ECL信号逐渐减弱,从而实现葡萄糖的准确、快速、灵敏检测。此方法测得葡萄糖的线性范围为1.0×10~(-7)~3.0×10~(-3) mol/L,检出限为3.0×10~(-8) mol/L。血清样品中葡萄糖的加标回收率为98.5%~106%。该策略为酶传感器的构建提供了新思路,为葡萄糖的检测提供了新方法。  相似文献   
3.
以提升学生的实验操作及创新能力为目的的综合化学实验,采用简单的2步法(缩合和Suzuki反应)合成了一种具有聚集诱导发光性能的化合物4,4'-[(2,2-二苯乙烯)-1,1-双(4,1-亚苯基)]二吡啶(简称2Py-TPE)。利用过滤、洗涤、萃取、干燥和柱层析等常用的有机分离操作手段对该化合物进行纯化;使用核磁共振仪、高分辨质谱仪、红外光谱仪及稳态瞬态荧光光谱仪对其进行结构表征和聚集诱导发光性能研究。该实验不仅可以促使学生了解以四苯乙烯衍生物为代表的聚集诱导发光材料的研究现状,而且能够培养学生的综合实验能力和科学探究能力。  相似文献   
4.
An approach was reported to synthesize silica hybridized ruthenium bipyridyl complex through amidation reaction by covalent attachment of bis(bipyridyl)-4,4'-dicarboxy-2,2'-bipyridyl-ruthenium to (3-aminopropyl)-triethoxysilane. The hybrid complex then was gelatinized through acid catalytic hydrolysis method and a sol-gel modified indium tin oxide electrode was prepared via spin coating technique. As prepared indium tin oxide electrode possesses good stability therein with excellent electrochemiluminescence behavior.  相似文献   
5.
The research on aggregation-induced emission (AIE) has drawn increasing interests in the past decade. With the efforts scientists paid, a variety of AIE systems have been developed, among which the tetraphenylethelene and silole derivatives are the most studied. Development of new AIE systems could further enrich the AIE molecules and promote the development of AIE area. In this communication, we prepared a new AIE system based on 1,2,4,6-tetraphenylpyridinium ions according to the restriction of intramolecular rotation mechanism. These molecules could be facilely synthesized via one-step and one-pot reaction. The ionic AIE-active molecules could find wide application in sensing and optoelectronic areas.  相似文献   
6.
7.
《Electroanalysis》2017,29(2):466-471
A novel, stable, solid‐state and stereoselective electrochemiluminescence (ECL) sensor has been designed to enantioselectively discriminate ascorbic acid (AA) and isoascorbic acid (IAA) by immobilizing Ru(bpy)32+ (Ru), thiolated β‐cyclodextrin (β‐CD‐SH) and gold/platinum hybrid nanoparticles supported on multiwalled carbon nanotube/silica coaxial nanocables (GP‐CSCN) on glassy carbon electrode. All chemical compounds could be immobilized on the surface of electrode stably through nafion film, and high stereoselectivity could be introduced to the sensor via the synergistic effects of the β‐CD‐SH and GP‐CSCN nanomaterials. When the developed sensor interacted with AA and IAA, obvious difference of ECL intensities was observed, and a larger intensity was obtained from AA, which indicated that this strategy could be employed to enantioselectively recognize AA and IAA. As a result, ECL technique might act as a promising method for recognition of chiral compounds.  相似文献   
8.
Organic luminescent materials with high quantum yields and/or white-light-emitting properties in particular play a crucial role in labeling and optoelectronic devices. In this work we have synthesized a new 2,3,6,7-tetramethoxy-9,10-di-p-tolylanthracene-bridged pillar[5]arene dimer with persistent mazarine blue fluorescent emission and much higher quantum yields in both solution and the solid state in comparison with its corresponding emissive linker without pillarene units, which exhibits typical aggregation-caused quenching. According to the fluorescence data and single-crystal analyses, their contrasting fluorescent performances can be rationally ascribed to their different stacking structures and intermolecular interactions. Three fluorescent guests containing different chromophores and/or terminal binding sites have also been synthesized to interact with the pillar[5]arene dimer to construct supramolecular ensembles with highly controllable luminescence, taking advantage of the stimuli-responsive properties of the supramolecular host–guest interactions. Intriguingly, multicolor fluorescence, including white-light emission (0.31, 0.35), which is in high demand, has been achieved by tuning the molar ratio of the host and guest and/or by changing the solvent system. This strategy holds great potential for the design and development of fluorescent materials with high quantum yields, controllable emission wavelength, and good stimuli-responsiveness.  相似文献   
9.
Aggregation‐induced emission (AIE) is a phenomenon where non‐luminescent compounds in solution become strongly luminescent in aggregate and solid phase. It provides a fertile ground for luminescent applications that has rapidly developed in the last 15 years. In this review, we focus on the contributions of theory and computations to understanding the molecular mechanism behind it. Starting from initial models, such as restriction of intramolecular rotations (RIR), and the calculation of non‐radiative rates with Fermi's golden rule (FGR), we center on studies of the global excited‐state potential energy surfaces that have provided the basis for the restricted access to a conical intersection (RACI) model. In this model, which has been shown to apply for a diverse group of AIEgens, the lack of fluorescence in solution comes from radiationless decay at a CI in solution that is hindered in the aggregate state. We also highlight how intermolecular interactions modulate the photophysics in the aggregate phase, in terms of fluorescence quantum yield and emission color.  相似文献   
10.
The electrochemistry, photophysics, and electrochemically generated chemiluminescence (ECL) of a family of polysulfurated dendrimers with a pyrene core have been thoroughly investigated and complemented by theoretical calculations. The redox and luminescence properties of dendrimers are dependent on the generation number. From low to higher generation it is both easier to reduce and oxidize them and the emission efficiency increases along the family, with respect to the polysulfurated pyrene core. The analysis of such data evidences that the formation of the singlet excited state by cation–anion annihilation is an energy‐deficient process and, thus, the ECL has been justified through the triplet–triplet annihilation pathway. The study of the dynamics of the ECL emission was achieved both experimentally and theoretically by molecular mechanics and quantum chemical calculations. It has allowed rationalization of a possible mechanism and the experimental dependence of the transient ECL on the dendrimer generation. The theoretically calculated Marcus electron‐transfer rate constant compares very well with that obtained by the finite element simulation of the whole ECL mechanism. This highlights the role played by the thioether dendrons in modulating the redox and photophysical properties, responsible for the occurrence and dynamics of the electron transfer involved in the ECL. Thus, the combination of experimental and computational results allows understanding of the dendrimer size dependence of the ECL transient signal as a result of factors affecting the annihilation electron transfer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号