首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9099篇
  免费   660篇
  国内免费   3591篇
化学   12192篇
晶体学   95篇
力学   29篇
综合类   93篇
数学   9篇
物理学   932篇
  2024年   18篇
  2023年   164篇
  2022年   240篇
  2021年   277篇
  2020年   385篇
  2019年   402篇
  2018年   354篇
  2017年   364篇
  2016年   387篇
  2015年   354篇
  2014年   516篇
  2013年   694篇
  2012年   671篇
  2011年   689篇
  2010年   553篇
  2009年   531篇
  2008年   616篇
  2007年   635篇
  2006年   559篇
  2005年   561篇
  2004年   577篇
  2003年   460篇
  2002年   375篇
  2001年   367篇
  2000年   366篇
  1999年   310篇
  1998年   302篇
  1997年   311篇
  1996年   219篇
  1995年   244篇
  1994年   184篇
  1993年   215篇
  1992年   145篇
  1991年   83篇
  1990年   79篇
  1989年   48篇
  1988年   33篇
  1987年   17篇
  1986年   8篇
  1985年   10篇
  1984年   11篇
  1983年   6篇
  1982年   3篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1959年   1篇
排序方式: 共有10000条查询结果,搜索用时 125 毫秒
1.
The designs of efficient and inexpensive Pt-based catalysts for methanol oxidation reaction (MOR) are essential to boost the commercialization of direct methanol fuel cells. Here, the highly catalytic performance PtFe alloys supported on multiwalled carbon nanotubes (MWCNTs) decorating nitrogen-doped carbon (NC) have been successfully prepared via co-engineering of the surface composition and electronic structure. The Pt1Fe3@NC/MWCNTs catalyst with moderate Fe3+ feeding content (0.86 mA/mgPt) exhibits 2.26-fold enhancement in MOR mass activity compared to pristine Pt/C catalyst (0.38 mA/mgPt). Furthermore, the CO oxidation initial potential of Pt1Fe3@NC/MWCNTs catalyst is lower relative to Pt/C catalyst (0.71 V and 0.80 V). Benefited from the optimal surface compositions, the anti-corrosion ability of MWCNT, strong electron interaction between PtFe alloys and MWCNTs and the N-doped carbon (NC) layer, the Pt1Fe3@NC/MWCNTs catalyst presents an improved MOR performance and anti-CO poisoning ability. This study would open up new perspective for designing efficient electrocatalysts for the DMFCs field.  相似文献   
2.
Wacker oxidation is an industry-adopted process to transform olefins into value-added epoxides and carbonyls. However, traditional Wacker oxidation involves the use of homogeneous palladium and copper catalysts for the olefin addition and reductive elimination. Here, we demonstrated an ultrahigh loading Cu single atom catalyst(14% Cu, mass fraction) for the palladium-free Wacker oxidation of 4-vinylanisole into the corresponding ketone with N-methylhydroxylamine hydrochloride as an additive under mild conditions. Mechanistic studies by 18O and deuterium isotope labelling revealed a hydrogen shift mechanism in this palladium-free process using N-methylhydroxylamine hydrochloride as the oxygen source. The reaction scope can be further extended to Kucherov oxidation. Our study paves the way to replace noble metal catalysts in the traditional homogeneous processes with single atom catalysts.  相似文献   
3.
A facile biosynthesis route was followed to prepare zinc oxide nanoparticles (ZnO NPs) using Euphorbia milii (E. milii) leaf constituents. The SEM images exhibited presence of spherical ZnO NPs and the corresponding TEM images disclosed monodisperse nature of the ZnO NPs with diameter ranges between 12 and 20 nm. The Brunauer–Emmett–Teller (BET) analysis revealed that the ZnO NPs have specific surface area of 20.46 m2/g with pore diameter of 2 nm–10 nm and pore volume of 0.908 cm3/g. The EDAX spectrum exemplified the existence of Zn and O elements and non-appearance of impurities that confirmed pristine nature of the ZnO NPs. The XRD pattern indicated crystalline peaks corresponding to hexagonal wurtzite structured ZnO with an average crystallite size of 16.11 nm. The FTIR spectrum displayed strong absorption bands at 512 and 534 cm?1 related to ZnO. The photocatalytic action of ZnO NPs exhibited noteworthy degradation of methylene blue dye under natural sunlight illumination. The maximum degradation efficiency achieved was 98.17% at an illumination period of 50 min. The reusability study proved considerable photostability of the ZnO NPs during photocatalytic experiments. These findings suggest that the E. milii leaf constituents can be utilized as suitable biological source to synthesis ZnO NPs for photocatalytic applications.  相似文献   
4.
Understanding the thermal aggregation behavior of metal atoms is important for the synthesis of supported metal clusters. Here, derived from a metal–organic framework encapsulating a trinuclear FeIII2FeII complex (denoted as Fe3) within the channels, a well-defined nitrogen-doped carbon layer is fabricated as an ideal support for stabilizing the generated iron nanoclusters. Atomic replacement of FeII by other metal(II) ions (e.g., ZnII/CoII) via synthesizing isostructural trinuclear-complex precursors (Fe2Zn/Fe2Co), namely the “heteroatom modulator approach”, is inhibiting the aggregation of Fe atoms toward nanoclusters with formation of a stable iron dimer in an optimal metal–nitrogen moiety, clearly identified by direct transmission electron microscopy and X-ray absorption fine structure analysis. The supported iron dimer, serving as cooperative metal–metal site, acts as efficient oxygen evolution catalyst. Our findings offer an atomic insight to guide the future design of ultrasmall metal clusters bearing outstanding catalytic capabilities.  相似文献   
5.
A ruthenium-catalyzed formal anti-Markovnikov hydroamination of allylic alcohols for the synthesis of chiral γ-amino alcohols is presented. Proceeding via an asymmetric hydrogen-borrowing process, the catalysis allows racemic secondary allylic alcohols to react with various amines, affording enantiomerically enriched chiral γ-amino alcohols with broad substrate scope and excellent enantioselectivities (68 examples, up to >99 % ee).  相似文献   
6.
Palladium nanoparticle‐incorporated metal–organic framework MIL‐101 (Pd/MIL‐101) was successfully synthesized and characterized using X‐ray diffraction, nitrogen physisorption, X‐ray photoelectron, UV–visible and infrared spectroscopies, and transmission electron microscopy. The characterization techniques confirmed high porosity and high surface area of MIL‐101 and high stability of nano‐size palladium particles. Pd/MIL‐101 nanocomposite was investigated for the Sonogashira cross‐coupling reaction of aryl and heteroaryl bromides with various alkynes under copper‐free conditions. The reusability of the catalyst was tested for up to four cycles without any significant loss in catalytic activity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
7.
Oxidation catalysis is used to increase the performance of hydrogen peroxide in laundry bleach applications. Bleach catalysts provide cost‐effective, energy‐saving and environmentally friendly bleach systems yielding perfect stain removal at lower temperatures. This comparative study is based on the synthesis of bis[bis(salicylhydrazonephenoxy)manganese(III)] phthalocyaninatozinc(II) ( 2 ), bis[bis(salicylhydrazonephenoxy)cobalt(III)] phthalocyaninatozinc(II) ( 3 ) and bis[bis(salicylhydrazonephenoxy)iron(III)] phthalocyaninatozinc(II) ( 4 ) as tri‐nuclear complexes consisting of two Schiff base complexes substituting a zinc phthalocyanine. Complexion on the periphery to obtain complexes 2 , 3 , 4 was performed through the reaction of a Schiff base‐substituted phthalocyanine using MnCl2?4H2O, CoCl2?6H2O or FeCl3?6H2O salts in basic condition in dimethylformamide. Fourier transform infrared, 1H NMR, 13C NMR, UV–visible, inductively coupled plasma optical emission and mass spectra were applied to characterize the prepared compounds. The bleach performances of the three phthalocyanine compounds 2 , 3 , 4 were examined by the degradation of morin as hydrophilic dye. The degradation progress in the presence of catalysts 2 , 3 , 4 /H2O2 combination in aqueous solution was investigated using an online spectrophotometric method. It was found that the catalysts 2 , 3 , 4 exhibited better bleaching performance at 25 °C than tetraactylethylethylenediamine as bleach activator used in powder detergent formulations for stain removal. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
8.
The paper presents the synthesis and catalytic activity of CuFe2O4 nanoparticles. The CuFe2O4 nanoparticles have been prepared by sonochemical route under low power ultrasonic irradiation (UI) and using silent stirring at room temperature only (ST) along with co-precipitation method, without using any additive/capping agent. The synthesized magnetic nanoparticles were successfully used and compared for the synthesis of 4H-chromene-3-carbonitrile derivatives. The CuFe2O4 nanoparticles obtained by sonochemical route exhibit higher catalytic activity because of small size (0.5–5 nm), high surface area (214.55 m2/g), high thermal stability up to 700 °C, recyclability and reusability due to its magnetic characteristics than CuFe2O4 nanoparticles obtained by room temperature silent stirring. The synthesized CuFe2O4 nanoparticles were characterized by FT-IR, SEM–EDX, HR-TEM, XRD, TGA/DTA/DTG, BET, VSM techniques. The present method is of great interest due to its salient features such as environmentally compatible, efficient, short reaction time, chemoselectivity, high yield, cheap, moisture insensitive, green and recyclable catalyst which make it sustainable protocol.  相似文献   
9.
The stable phase equilibria of quaternary systems LiBr-NaBr-MgBr2-H2O and LiBr-KBr-MgBr2-H2O at 298.15 K were studied by both experimental measurement(isothermal solution saturation method) and theoretical prediction(Pitzer model). The solubilities of the saturated solution have been determined experimentally and two stable phase diagrams and relevant water diagrams of the two quaternary systems were obtained. Results show that quaternary system LiBr-NaBr-MgBr2-H2O is hydrate II type as NaBr and NaBr·2H2O coexistence. Its phase diagram consists of only one invariant point, four univariant curves, and five crystallization fields. The quaternary system LiBr-KBr-MgBr2-H2O is a complex type as the double salt KBr·MgBr2·6H2O formed. In addition to this double salt, the three single salts LiBr·2H2O, KBr and MgBr2·6H2O also crystallize. In this paper, the solubilities of phase equilibria in above quaternary systems were also calculated by the Pitzer's electrolyte solution model. All the needed parameters can be obtained from the literature or be fitted by experimental data. On the Basis of the experimental and calculated results, the phase diagram of the quaternary system was plotted for comparison. It shows that the calculation results are consistent with the experimental ones.  相似文献   
10.
A zinc coordination polymer derived from pyridine-2,6-dicarboxylate (PDC), {[Zn2(PDC)2]}n, was successfully prepared via conventional, sonication and microwave-irradiation methods. The composition and characteristics of the obtained coordination polymers (CPs) were investigated by elemental analysis, TGA/DTA, X-ray diffraction and spectroscopic techniques. The so obtained CPs were heat-treated in the air at 600 °C for 2 h to produce ZnO of nanosized particles (NPs). It is of interest to note that the synthesis approach of the precursor greatly affects both the nanoparticle size and the structure of the resulting ZnO NPs. Moreover, the smallest particle size was associated with the sample derived from the ultrasonically prepared precursor. TEM analysis revealed that all samples have sphere-like morphologies. Structural analysis of the prepared ZnO samples was conducted and compared using Rietveld analysis of their PXRD patterns. Optical band gap calculations based on analysis of the UV–vis spectra of ZnO samples using Tauc's power law were achieved. The highest band gap of 3.63 eV was observed for ZnO sample obtained from the ultrasonically prepared precursor. Furthermore, the photocatalytic activity of ZnO NPs for the removal of Eosin Y color was monitored. The highest removal efficiency was recorded for ZnO originated from the ultrasonically synthesized precursor. Enhancement of removal efficiency that reached 98% was attained in only a period of 8 min. Its recycling test showed that it can be reused without structural changes over four cycling experiments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号