首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
化学   2篇
  2019年   2篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Controlling the reactivity of transition metals using secondary, σ‐accepting ligands is an active area of investigation that is impacting molecular catalysis. Herein we describe the phosphine gold complexes [(o‐Ph2P(C6H4)Acr)AuCl]+ ([ 3 ]+; Acr=9‐N‐methylacridinium) and [(o‐Ph2P(C6H4)Xan)AuCl]+ ([ 4 ]+; Xan=9‐xanthylium) where the electrophilic carbenium moiety is juxtaposed with the metal atom. While only weak interactions occur between the gold atom and the carbenium moiety of these complexes, the more Lewis acidic complex [ 4 ]+ readily reacts with chloride to afford a trivalent phosphine gold dichloride derivative ( 7 ) in which the metal atom is covalently bound to the former carbocationic center. This anion‐induced AuI/AuIII oxidation is accompanied by a conversion of the Lewis acidic carbocationic center in [ 4 ]+ into an X‐type ligand in 7 . We conclude that the carbenium moiety of this complex acts as a latent Z‐type ligand poised to increase the Lewis acidity of the gold center, a notion supported by the carbophilic reactivity of these complexes.  相似文献   
2.
Rhodium complexes with an indium metalloligand were successfully synthesized by utilizing a pyridine‐tethered cyclopentadienyl ligand as a support for an In?Rh bond. The indium metalloligand dramatically changes the electronic and redox properties of the rhodium metal, thereby enabling catalysis of sp2C?H bond activation.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号