首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   193篇
  免费   4篇
  国内免费   8篇
化学   41篇
力学   11篇
数学   16篇
物理学   137篇
  2023年   3篇
  2021年   5篇
  2020年   6篇
  2019年   2篇
  2018年   3篇
  2017年   2篇
  2016年   2篇
  2015年   3篇
  2014年   13篇
  2013年   5篇
  2012年   19篇
  2011年   16篇
  2010年   14篇
  2009年   12篇
  2008年   20篇
  2007年   14篇
  2006年   21篇
  2005年   8篇
  2004年   5篇
  2003年   9篇
  2002年   1篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
  1998年   2篇
  1997年   3篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1989年   1篇
  1988年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1973年   1篇
排序方式: 共有205条查询结果,搜索用时 31 毫秒
1.
To improve the understanding of the electrochemical effects observed on an original potentiometric gas sensor, interactions of oxygen with the device were investigated. This gas sensor is made of a solid electrolyte (treated Na-β-alumina) associated with two metallic electrodes (gold and platinum) located in the same gas mixture. Adsorption of charged oxygen species, considered responsible for the electrical response developed by the sensor, was investigated by work function measurements. Results showed that charged oxygen species only form on partially gold or platinum covered solid electrolyte. Comparison of these results with those obtained in a previous calorimetric study of interactions between oxygen and the same materials suggests the existence of at least two different oxygen species adsorbed on the surface of the sensitive element. The first one, located on the solid electrolyte surface, is neutral and characterized by an endothermal reaction of formation. The second one is charged and probably produced at the gas/solid electrolyte/metallic electrode interface. A mechanism based on the concept of “three phase boundary” and similar to the “reverse spillover” phenomenon is proposed to account for the adsorption of these oxygen species.  相似文献   
2.
In this work, a comparison of the interfacial electronic properties between a semiconducting oligomer and a variety of substrates with different properties—metal, semiconductor and oxide layers—is reported. The interface formation was studied by X-ray and Ultraviolet photoelectron spectroscopies (XPS, UPS). High purity oligomer films with thickness up to 10 nm were prepared by stepwise evaporation on the clean substrates under ultrahigh vacuum (UHV) conditions. Analysis of the oligomer and substrate related XPS spectra clarified the interfacial chemistry and band bending in the semiconducting materials. The valence band structure and the interfacial dipoles were determined by UPS. The barriers for hole injection were measured at the interfaces of the organic film with all substrates. The interfacial energy band diagrams were deduced in all cases from the combination of XPS and UPS results. Emphasis was given on the influence of the substrate work function () on the electronic properties of these interfaces.  相似文献   
3.
All-electron full-potential linearized augmented plane-wave calculations of the surface energy, work function, and interlayer spacings of close-packed metal surfaces are presented, in particular, for the free-electron-like metal surfaces, Mg(0 0 0 1) and Al(1 1 1), and for the transition metal surfaces, Ti(0 0 0 1), Cu(1 1 1), Pd(1 1 1), and Pt(1 1 1). We investigate the convergence of the surface energy as a function of the number of layers in the slab, using the Cu(1 1 1) surface as an example. The results show that the surface energy, as obtained using total energies of the slab and bulk from separate calculations, converges well with respect to the number of layers in the slab. Obviously, it is necessary that bulk and surface calculations are performed with the same high accuracy. Furthermore, we discuss the performance of the local-density and generalized gradient approximations for the exchange-correlation functional in describing the various surface properties.  相似文献   
4.
The vertical ionization potentials of difluoramine are calculated by perturbation corrections to Koopmans' theorem. The calculation shows that difluoraimine has three overlapping bands between 15 and 16 eV. The calculated results compare well with the experimental values. The photoelectron spectrum of difluoramine is compared with that of OF2 and CH2F2.  相似文献   
5.
In the present work, an important point concerning the NEMCA effect is addressed. We analyse the reasons why the changes in the work function of the gas exposed catalyst-electrode surface are one to one related to the changes in the catalyst working electrode potential E with respect to a reference electrode. It is concluded that this is due to the unique properties of the catalyst/solid electrolyte interface: the structure of the double layer in this region is very different from that in liquid electrolytes, being the potential difference at this interface mainly determined by the specific adsorption of the mobile species in the solid electrolyte.
Ezequiel P. M. LeivaEmail:
  相似文献   
6.
Thermo-oxidative effects on the surface energy of polypropylene were measured by inverse gas chromatography as a function of exposure time and temperature. Unaltered polypropylene had a surface energy of 33 mJ/m2. Oxidized polypropylene, after exposure to air at temperatures of 100 °C and 110 °C, had a range of maximum surface energies from 38 to 41 mJ/m2. Comparisons between FTIR carbonyl peak growth and the surface energy showed that both methods detect oxidation, though the increase in surface energy is detected before the carbonyl peak growth is noticeable. The work of adhesion predicted by the surface free energies obtained in this work between a coated calcium carbonate and polypropylene changes by 10% due to the oxidation of the polymer at 110 °C.  相似文献   
7.
Water adsorption dynamics on two TiO2 (1 1 0) rutile surfaces at room temperature has been investigated using the work function (WF) change as a function of time. The first surface was prepared in a standard way using sputtering/annealing cycles, whereas the second one was long term annealed at 620 K in moderate vacuum conditions (the residual gas pressure of about 1 × 10−7 mbar) and cleaned afterwards. The WF change show striking difference as compared to those obtained for highly reduced TiO2 (1 1 0) rutile or the (2 × 1) reconstructed surfaces. For the first kind of surface we show that the observed adsorption dynamics can be qualitatively explained by the present understanding of the water adsorption on non-reconstructed TiO2 (1 1 0) rutile surface according to which the bridging oxygen vacancies and Ti rows are the main adsorption sites. Although generally similar to the former results, water adsorption dynamics on the second kind of the surface has an additional feature that can be only explained by a new adsorption site, which we suggest to be due to (2 × 1) reconstructed regions coexisting with the non-reconstructed TiO2 (1 1 0) surface.  相似文献   
8.
《Current Applied Physics》2015,15(6):675-678
Penetration effects of various electrode materials, namely Al, Au, and Cu, on the physical and electrical characteristics of amorphous oxide semiconductor thin film transistors (TFTs) were investigated. Amorphous indium gallium zinc oxide (a-IGZO) TFTs were fabricated with conventional staggered bottom gate structures on a p-type Si substrate. X-ray photoemission spectroscopy (XPS) analysis under the electrode deposition area revealed variations in the oxygen bonding states and material compositions of the a-IGZO layer. Field-emission scanning electron microscopy (FE-SEM) with the line scan of energy dispersive spectroscopy (EDS) showed lateral penetration by the electrode metal. To compare the electrical characteristics of the tested TFTs, the initial current–voltage (I–V) transfer characteristics were examined. In addition, the tested TFTs fabricated using various electrode materials were tested under bias stress to verify the correlations between variations in TFT characteristics and both the metal work function and penetration-induced oxygen vacancies in the channel around the contact area.  相似文献   
9.
10.
孙大鹏  李微雪 《催化学报》2013,34(5):973-978
采用密度泛函理论系统研究了超薄氧化物膜/金属体系FeO/Pt和FeO2/Pt及其表面不同区域(FCC,HCP和TOP)的几何结构、电子性质及氧的活性.研究发现,表面O-Fe高度差δz作为一个重要的特征结构参数直接影响局域表面静电势和表面氧的结合能: δz越大,静电势越大,氧的结合能越弱.计算发现,在FeO/Pt体系中,δz顺序为FCC > HCP > TOP,而FeO2/Pt中是FCC > TOP > HCP.此外,在FeO/Pt中,电荷转移方向是从氧化物膜到衬底,Fe的表观价态为+2.36,表面功函较纯Pt(111)的变化可忽略; 而FeO2/Pt中,电荷转移的方向是从衬底到氧化物,Fe的表观价态为+2.95,表面功函较纯Pt增加1.24 eV.进一步分析了电荷转移和表面偶极对电子性质的作用机制.这些研究结果对于认识超薄氧化物薄膜对表面几何结构、电子性质、表面氧活性的调制具有重要的启示意义.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号