首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
化学   7篇
物理学   1篇
  2020年   1篇
  2019年   3篇
  2013年   1篇
  2012年   1篇
  2008年   2篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
2.
3.
4.
5.
Natural products (NPs) from microorganisms have been important sources for discovering new therapeutic and chemical entities. While their corresponding biosynthetic gene clusters (BGCs) can be easily identified by gene‐sequence‐similarity‐based bioinformatics strategies, the actual access to these NPs for structure elucidation and bioactivity testing remains difficult. Deletion of the gene encoding the RNA chaperone, Hfq, results in strains losing the production of most NPs. By exchanging the native promoter of a desired BGC against an inducible promoter in Δhfq mutants, almost exclusive production of the corresponding NP from the targeted BGC in Photorhabdus, Xenorhabdus and Pseudomonas was observed including the production of several new NPs derived from previously uncharacterized non‐ribosomal peptide synthetases (NRPS). This easyPACId approach (easy Promoter Activated Compound Identification) facilitates NP identification due to low interference from other NPs. Moreover, it allows direct bioactivity testing of supernatants containing secreted NPs, without laborious purification.  相似文献   
6.
Malt whiskies bottled by one single distillery are called single malts. The ingredients for producing Scotch single malts are peat‐smoked barley malt and yeast. After fermentation, these yield an alcoholic liquid which is distilled in copper pot stills. Having been stored in oak casks for a legaly ordered time of at least three years, the new spirit may be sold as Scotch whisky. Its flavour is mainly due to chemical components forming during storage in a maturation process, but the peat used in malting and the pot stills also have some influence on its character.  相似文献   
7.
8.
Despite growing research efforts on the preparation of (bio)functional liposomes, synthetic capsules cannot reach the densities of protein loading and the control over peptide display that is achieved by natural vesicles. Herein, a microbial platform for high‐yield production of lipidic nanovesicles with clickable thiol moieties in their outer corona is reported. These nanovesicles show low size dispersity, are decorated with a dense, perfectly oriented, and customizable corona of transmembrane polypeptides. Furthermore, this approach enables encapsulation of soluble proteins into the nanovesicles. Due to the mild preparation and loading conditions (absence of organic solvents, pH gradients, or detergents) and their straightforward surface functionalization, which takes advantage of the diversity of commercially available maleimide derivatives, bacteria‐based proteoliposomes are an attractive eco‐friendly alternative that can outperform currently used liposomes.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号