首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   130篇
  免费   5篇
  国内免费   14篇
化学   143篇
晶体学   1篇
物理学   5篇
  2023年   2篇
  2021年   1篇
  2020年   4篇
  2019年   5篇
  2018年   2篇
  2017年   2篇
  2015年   5篇
  2014年   2篇
  2013年   5篇
  2012年   15篇
  2011年   11篇
  2010年   7篇
  2009年   13篇
  2008年   11篇
  2007年   14篇
  2006年   3篇
  2005年   11篇
  2004年   9篇
  2003年   6篇
  2002年   1篇
  2001年   6篇
  2000年   3篇
  1998年   2篇
  1997年   1篇
  1993年   2篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1985年   2篇
排序方式: 共有149条查询结果,搜索用时 31 毫秒
1.
A new derivative of dioxouranium(VI) salen complex, [UO2(L)(pyridine)], where [L = N,N′-Bis(2-hydroxybenzylidene)-2,2-dimethyl-1,3-propanediamine] is synthesized and characterized by elemental analysis (C, H, N), FT-IR, ESI-MS spectrometry, UV/Vis, fluorescence, 1H and 13C NMR spectroscopy and thermal gravimetric (TG) study. Furthermore, the single crystal X-ray diffraction measurements of the complex were carried out at 100 and 273 K. The crystal structure measurements revealed that the complex has distorted pentagonal bipyramidal geometry with uranium atom located at the centre and bonded to two phenoxy oxygen and two azomethine nitrogen in tetradenate fashion and one nitrogen from pyridine making it seven coordinated. In addition, the photoluminescence property of the complex was also recorded.  相似文献   
2.
Two hydrated uranyl arsenates and a uranyl phosphate were synthesized by hydrothermal methods in the presence of amine structure-directing agents and their structures determined: (N2C6H14)[(UO2)(AsO4)]2(H2O)3, DabcoUAs, {NH(C2H5)3}[(UO2)2(AsO4)(AsO3OH)], TriethUAs, and (N2C4H12)(UO2)[(UO2)(PO4)]4(H2O)2, PiperUP. Intensity data were collected at room temperature using MoKα X-radiation and a CCD-based area detector. The crystal structures were refined by full-matrix least-squares techniques on the basis of F2 to agreement indices (DabcoUAs, TriethUAs, PiperUP) wR2=5.6%, 8.3%, 7.2% for all data, and R1=2.9%, 3.3%, 4.0%, calculated for 1777, 5822, 9119 unique observed reflections (|Fo|?4σF), respectively. DabcoUAs is monoclinic, space group C2/m, Z=2, a=18.581(1), b=7.1897(4), c=7.1909(4) Å, β=102.886(1)°, V=936.43(9) Å3, Dcalc=3.50 g/cm3. TriethUAs is monoclinic, space group P21/n, Z=4, a=9.6359(4), b=18.4678(7), c=10.0708(4) Å, β=92.282(1)°, V=1790.7(1) Å3, Dcalc=3.41 g/cm3. PiperUP is monoclinic, space group Pn, Z=2, a=9.3278(4), b=15.5529(7), c=9.6474(5) Å, β=93.266(1)°, V=1397.3(1) Å3, Dcalc=4.41 g/cm3. The structure of DabcoUAs contains the autunite-type sheet formed by the sharing of vertices between uranyl square bipyramids and arsenate tetrahedra. The triethylenediammonium cations are located in the interlayer along with two H2O groups and are disordered. Both TriethUAs and PiperUP contain sheets formed of uranyl pentagonal bipyramids and tetrahedra (arsenate and phosphate, respectively) with the uranophane sheet-anion topology. In TriethUAs, triethlyammonium cations are located in the interlayer. In PiperUP, the sheets are connected by a uranyl pentagonal bipyramid that shares corners with phosphate tetrahedra of adjacent sheets, resulting in a framework with piperazinium cations and H2O groups in the cavities of the structure.  相似文献   
3.
Two hydrated uranyl arsenates, Cs2(UO2)[(UO2)(AsO4)]4(H2O)2 (CsUAs) and Rb2(UO2)[(UO2)(AsO4)]4(H2O)4.5 (RbUAs), were synthesized by hydrothermal methods. Intensity data were collected at room temperature using MoKα radiation and a CCD-based area detector. The crystal structure of RbUAs was solved by direct methods, whereas the structure model of the phosphate Cs2(UO2)[(UO2)(PO4)]4(H2O)2 was used for CsUAs; both were refined by full-matrix least-squares techniques on the basis of F2 to agreement indices (CsUAs, RbUAs) wR2=0.061,0.041, for all data, and R1=0.032,0.021, calculated for 5098, 4991 unique observed reflections (|Fo|>4σF), respectively. The compound CsUAs is orthorhombic, space group Cmc21, Z=4, a=15.157(2), b=14.079(2), c=13.439(2) Å, V=2867.9(1) Å3. RbUAs is monoclinic, space group C2/m, Z=4, a=13.4619(4), b=15.8463(5), c=14.0068(4) Å, β=92.311(1)°, V=2985.52(2) Å3. The structures consist of sheets of arsenate tetrahedra and uranyl pentagonal bipyramids, with composition [(UO2)(AsO4)], that are topologically identical to the uranyl silicate sheets in uranophane-beta. These sheets are connected by a uranyl pentagonal bipyramid in the interlayer that shares corners with two arsenate tetrahedra on each of two adjacent sheets and whose fifth equatorial vertex is an H2O group, resulting in an open framework with alkali metal cations in the larger cavities of the structures. CsUAs is isostructural with its phosphate analogue, and has two Cs atoms and a H2O group in its structural cavities. RbUAs is not isostructural with its phosphate analogue, although it has a homeotypic framework. Its structural cavities are occupied by three Rb atoms and four H2O groups; one Rb position and three of the interstitial H2O groups are half-occupied. The partial occupancies of these positions probably result from the accommodation of the larger As atoms (relative to P) in the framework and resultant larger cavities.  相似文献   
4.
Single crystals of the potassium uranyl iodate, K[UO2(IO3)3] (1), have been grown under mild hydrothermal conditions. The structure of 1 contains two-dimensional sheets extending in the [ab] plane that consist of approximately linear UO22+ cations bound by iodate anions to yield UO7 pentagonal bipyramids. There are three crystallographically unique iodate anions, two of which bridge between uranyl cations to create sheets, and one that is monodentate and protrudes in between the layers in cavities. K+ cations form long ionic contacts with oxygen atoms from the layers forming an eight-coordinate distorted dodecahedral geometry. These cations join the sheets together. Ion-exchange reactions have been carried out that indicate the selective uptake of Cs+ over Na+ or K+ by 1. Crystallographic data (193 K, MoKα, ): 1, orthorhombic, Pbca, a=11.495(1) Å, b=7.2293(7) Å, c=25.394(2) Å, Z=8, R(F)=1.95% for 146 parameters with 2619 reflections with I>2σ(I).  相似文献   
5.
The polarographic behaviour of uranyl ion in maleic acid solution shows two reduction waves. The half wave potential of the first wave is shifted to more negative values in contrast to that of the second wave, which is shifted to less negative potentials on increase of thepH of the solution. The first wave represents the reduction of the 1:1 uranyl-maleate complex, while the second wave represents the reduction of the 1:2 complex. The presence of 1:1 and 1:2 complexes is supported by spectrophotometric and conductometric methods. The stability constants were also determined and the reduction mechanism is discussed.
Das polarographische Verhalten von Uranyl-Ionen in Maleinsäure- und Maleat-Puffer-Lösungen
Zusammenfassung Die polarographische Kurve von Uranyl-Ionen in Maleinsäurelösung zeigt zwei Reduktionswellen. Das Halbwellenpotential der ersten Welle verschiebt sich bei ansteigendempH der Lösung zu negativeren Werten, im Gegensatz zur zweiten Welle, die eine positive Verschiebung zeigt. Die erste Welle repräsentiert die Reduktion des 1:1-Uranyl-Maleat-Komplexes, die zweite Welle hingegen die Reduktion des 1:2-Komplexes. Die Präsenz von 1:1- und 1:2-Komplexen wird auch durch spektrophotometrische und konduktometrische Messungen erhärtet. Die Stabilitätskonstanten wurden bestimmt, der Mechanismus der Reduktion wird diskutiert.
  相似文献   
6.
The uranyl and neptunyl(VI) iodates, K3[(UO2)2(IO3)6](IO3)·H2O (1) and K[NpO2(IO3)3]·1.5H2O (2), have been prepared and crystallized under mild hydrothermal conditions. The structures of 1 and 2 both contain one-dimensional 1[AnO2(IO3)3]1−(An=U,Np) ribbons that consist of approximately linear actinyl(VI) cations bound by iodate anions to yield AnO7 pentagonal bipyramids. The AnO7 units are linked by bridging iodate anions to yield chains that are in turn coupled by additional iodate anions to yield ribbons. The edges of the ribbons are terminated by monodentate iodate anions. For 1 and 2, K+ cations and water molecules separate the ribbons from one another. In addition, isolated iodate anions are also found between 1[UO2(IO3)3]1− ribbons in 1. In order to aid in the assignment of oxidation states in neptunyl containing compounds, a bond-valence sum parameter of 2.018 Å for Np(VI) bound exclusively to oxygen has been developed with b=0.37 Å. Crystallographic data (193 K, MoKα, λ=0.71073): 1, triclinic, , a=7.0609(4) Å, b=14.5686(8)  Å, c=14.7047(8)  Å, α=119.547(1)°, β=95.256(1)°, γ=93.206(1)°, Z=2, R(F)=2.49% for 353 parameters with 6414 reflections with I>2σ(I); (203 K, MoKα, λ=0.71073): 2, monoclinic, P21/c, a=7.796(4)  Å, b=7.151(3)  Å, c=21.79(1)  Å, β=97.399(7)°, Z=4, R(F)=6.33% for 183 parameters with 2451 reflections with I>2σ(I).  相似文献   
7.
The carbamoyl methyl sulfoxide compounds of uranyl bis(β-diketonate) of the types [UO2(DBM)2CMSO] and [{UO2(DBM)2}2CMSO] (where HDBM = C6H5COCH2COC6H5; CMSO = C6H5CH2SOCH2CONHC6H5 or C6H5SOCH2CONiPr2) have been synthesized and characterized by IR and NMR spectroscopic techniques and elemental analysis. Spectral studies show that CMSO acts as a monodentate ligand in [UO2(DBM)2CMSO] compounds and bonds through the sulfoxo oxygen atom to the uranyl group. It acts as a bridging bidentate ligand in [{UO2(DBM)2}2CMSO] compounds and bonds through both the sulfoxo and carbamoyl oxygen atoms to two different uranyl groups. The structure of the compound [{UO2(DBM)2}2C6H5CH2SOCH2CONHC6H5] confirms the bridging bidentate mode of coordination for the CMSO ligand. Extraction studies show an enhancement in solvent extraction for the uranyl ion from nitric acid medium when a mixture of thenoyl trifluoroacetone (HTTA) and CMSO was employed.  相似文献   
8.
The hydrothermal reaction of UO3, WO3, and CsIO4 leads to the formation of Cs6[(UO2)4(W5O21)(OH)2(H2O)2] and UO2(IO3)2(H2O). Cs6[(UO2)4(W5O21)(OH)2(H2O)2] is the first example of a hydrothermally synthesized uranyl tungstate. It's structure has been determined by single-crystal X-ray diffraction. Crystallographic data: tetragonal, space group Icm, , , Z=4, MoKα, , R(F)=2.84% for 135 parameters with 2300 reflections with I>2σ(I). The structure is comprised of two-dimensional anionic layers that are separated by Cs+ cations. The coordination polyhedra found in the novel layers consist of UO7 pentagonal bipyramids, WO6 distorted octahedra, and WO5 square pyramids. The UO7 polyhedra are formed from the binding of five equatorial oxygen atoms around a central uranyl, UO22+, unit. Both bridging and terminal oxo ligands are employed in forming the WO5 square pyramidal units, while oxo, hydroxo, and aqua ligands are found in the WO6 distorted octahedra. In the layers, four (UO2)O5 polyhedra corner share with equatorial oxygen atoms to form a U4O24 tetramer entity with a square site in the center; a tungsten atom populates the center of each of these sites to form a U4WO25 pentamer unit. The pentamer units that result are connected in two dimensions by edge-shared dimers of WO6 octahedra to form the two-dimensional [(UO2)4(W5O21)(OH)2(H2O)2]6- layers. The lack of inversion symmetry in Cs6[(UO2)4(W5O21)(OH)2(H2O)2] can be directly contributed to the WO5 square pyramids found in the pentamer units. In the structure, all of these polar polyhedra align their terminal oxygens in the same orientation, along the c axis, thus resulting in a polar compound.  相似文献   
9.
The reaction of UO3 and TeO3 with a KCl flux at 800 °C for 3 days yields single crystals of K4[(UO2)5(TeO3)2O5]. The structure of the title compound consists of layered, two-dimensional sheets arranged in a stair-like topology separated by potassium cations. Contained within these sheets are one-dimensional uranium oxide ribbons consisting of UO7 pentagonal bipyramids and UO6 tetragonal bipyramids. The ribbons are in turn linked by corner-sharing with trigonal pyramidal TeO3 units to form sheets. The lone-pair of electrons from the TeO3 groups are oriented in opposite directions with respect to one another on each side of the sheets rendering each individual sheet nonpolar. The potassium cations form contacts with nearby tellurite units and axial uranyl oxygen atoms. Crystallographic data (193 K, MoKα, ): triclinic, space group , , , , α=99.642(1)°, β=93.591(1)°, γ=100.506(1)°, , Z=1,R(F)=4.19% for 149 parameters and 2583 reflections with I>2σ(I).  相似文献   
10.
p-tert-Butyloctahomotetraoxacalix[8]arene (LH8) reacts with uranyl nitrate hexahydrate in the presence of rubidium hydroxide to give a mixed complex that can be viewed as a tetrauranate dimer [(UO2)4(LH4)2(OH)4] containing four disordered rubidium ions and water molecules. Two uranyl ions are complexed in an “external” fashion by each macrocycle, each of them bound to two phenoxide groups and one ether group, as well as to two bridging hydroxide ions. The latter ensure the formation of a dimeric capsule that contains the disordered set of alkali metal ions. Apart from water molecules, the Rb+ ions are bound to the uranyl oxo groups directed towards the inner cavity, and to phenol and ether oxygen atoms from the macrocycle. The resulting octanuclear complex presents an unprecedented geometry evidencing the assembling potential of uranyl ions.

p-tert-Butyloctahomotetraoxacalix[8]arene (LH8) reacts with uranyl nitrate hexahydrate in the presence of rubidium hydroxide to give a mixed complex that can be viewed as a tetrauranate dimer [(UO2)4(LH4)2(OH)4] containing four disordered rubidium ions and water molecules. Two uranyl ions are complexed in an “external” fashion by each macrocycle, each of them bound to two phenoxide groups and one ether group, as well as to two bridging hydroxide ions. The latter ensure the formation of a dimeric capsule that contains the disordered set of alkali metal ions. Apart from water molecules, the Rb+| ions are bound to the uranyl oxo groups directed towards the inner cavity, and to phenol and ether oxygen atoms from the macrocycle. The resulting octanuclear complex presents an unprecedented geometry evidencing the assembling potential of uranyl ions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号