首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   117篇
  免费   27篇
  国内免费   12篇
化学   10篇
力学   2篇
数学   118篇
物理学   26篇
  2023年   4篇
  2022年   4篇
  2021年   6篇
  2020年   9篇
  2019年   6篇
  2018年   3篇
  2017年   1篇
  2016年   5篇
  2015年   6篇
  2014年   7篇
  2013年   8篇
  2012年   5篇
  2011年   3篇
  2010年   3篇
  2009年   18篇
  2008年   7篇
  2007年   6篇
  2006年   9篇
  2005年   2篇
  2004年   6篇
  2003年   7篇
  2002年   5篇
  2001年   6篇
  2000年   2篇
  1999年   2篇
  1998年   3篇
  1997年   4篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1992年   1篇
  1985年   2篇
  1977年   1篇
排序方式: 共有156条查询结果,搜索用时 265 毫秒
1.
2.
A computably enumerable (c.e.) degree a is called nonbounding, if it bounds no minimal pair, and plus cupping, if every nonzero c.e. degree x below a is cuppable. Let NB and PC be the sets of all nonbounding and plus cupping c.e. degrees, respectively. Both NB and PC are well understood, but it has not been possible so far to distinguish between the two classes. In the present paper, we investigate the relationship between the classes NB and PC , and show that there exists a minimal pair which join to a plus cupping degree, so that PC ? NB . This gives a first known difference between NB and PC . (© 2003 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
3.
4.
In this paper, a diffusive predator–prey system, in which the prey species exhibits herd behavior and the predator species with quadratic mortality, has been studied. The stability of positive constant equilibrium, Hopf bifurcations, and diffusion‐driven Turing instability are investigated under the Neumann boundary condition. The explicit condition for the occurrence of the diffusion‐driven Turing instability is derived, which is determined by the relationship of the diffusion rates of two species. The formulas determining the direction and the stability of Hopf bifurcations depending on the parameters of the system are derived. Finally, numerical simulations are carried out to verify and extend the theoretical results and show the existence of spatially homogeneous periodic solutions and nonconstant steady states. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
5.
This article describes a nutrient‐phytoplankton‐zooplankton system with nutrient recycling in the presence of toxicity. We have studied the dynamical behavior of the system with delayed nutrient recycling in the first part of the article. Uniform persistent of the system is examined. In the second part of the article, we have incorporated diffusion of the plankton population to the system and dynamical behavior of the system is analyzed with instantaneous nutrient recycling. The condition of the diffusion driven instability is obtained. The conditions for the occurrence of Hopf and Turing bifurcation critical line in a spatial domain are derived. Variation of the system with small periodicity of diffusive coefficient has been studied. Stability condition of the plankton system subject to the periodic diffusion coefficient of the zooplankton is derived. It is observed that nutrient‐phytoplankton‐zooplankton interactions are very complex and situation specific. Moreover, we have obtained different exciting results, ranging from stable situation to cyclic oscillatory behavior may occur under different favorable conditions, which may give some insights for predictive management. © 2014 Wiley Periodicals, Inc. Complexity 21: 229–241, 2015  相似文献   
6.
We show that there do not exist computable functions f 1(e, i), f 2(e, i), g 1(e, i), g 2(e, i) such that for all e, iω, (1) $ {\left( {W_{{f_{1} {\left( {e,i} \right)}}} - W_{{f_{2} {\left( {e,i} \right)}}} } \right)} \leqslant _{{\rm T}} {\left( {W_{e} - W_{i} } \right)}; $ (2) $ {\left( {W_{{g_{1} {\left( {e,i} \right)}}} - W_{{g_{2} {\left( {e,i} \right)}}} } \right)} \leqslant _{{\rm T}} {\left( {W_{e} - W_{i} } \right)}; $ (3) $ {\left( {W_{e} - W_{i} } \right)} \not\leqslant _{{\rm T}} {\left( {W_{{f_{1} {\left( {e,i} \right)}}} - W_{{f_{2} {\left( {e,i} \right)}}} } \right)} \oplus {\left( {W_{{g_{1} {\left( {e,i} \right)}}} - W_{{g_{2} {\left( {e,i} \right)}}} } \right)}; $ (4) $ {\left( {W_{e} - W_{i} } \right)} \not\leqslant _{{\rm T}} {\left( {W_{{f_{1} {\left( {e,i} \right)}}} - W_{{f_{2} {\left( {e,i} \right)}}} } \right)}{\text{unless}}{\left( {W_{e} - W_{i} } \right)} \leqslant _{{\rm T}} {\emptyset};{\text{and}} $ (5) $ {\left( {W_{e} - W_{i} } \right)} \leqslant _{{\rm T}} {\left( {W_{{g_{1} {\left( {e,i} \right)}}} - W_{{g_{2} {\left( {e,i} \right)}}} } \right)}{\text{unless}}{\left( {W_{e} - W_{i} } \right)} \leqslant _{{\rm T}} {\emptyset}. $ It follows that the splitting theorems of Sacks and Cooper cannot be combined uniformly.  相似文献   
7.
Taking the view that computation is after all physical, we argue that physics, particularly quantum physics, could help extend the notion of computability. Here, we list the important and unique features of quantum mechanics and then outline a quantum mechanical “algorithm” for one of the insoluble problems of mathematics, the Hilbert's tenth and equivalently the Turing halting problem. The key element of this algorithm is the computability and measurability of both the values of physical observables and of the quantum-mechanical probability distributions for these values.  相似文献   
8.
Abstract We prove that there are non-recursive r.e. sets A and C with A < T C such that for every set . Both authors are supported by “863” and the National Science Foundation of China  相似文献   
9.
We claim that the theoretical hypercomputation problem has already been solved, and that what remains is an engineering problem. We review our construction of the Halting Function (the function that settles the Halting Problem) and then sketch possible blueprints for an actual hypercomputer.  相似文献   
10.
We apply complexity concepts to define a new sort of sub-Turing reducibilities ≤ ?? make the degree hierarchy thinner and to obtain some new specifications of the well known jump inversion theorem of Friedberg. We show that this theorem doesn't hold when ≤ T is replaced with ≤ ??, where ?? is any countable subset of the class ?? of all total increasing functions f : ? → ?.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号