首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   0篇
化学   25篇
物理学   1篇
  2023年   1篇
  2022年   2篇
  2020年   1篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2004年   5篇
  2003年   2篇
  2002年   2篇
  1999年   1篇
  1998年   2篇
  1996年   1篇
  1995年   1篇
排序方式: 共有26条查询结果,搜索用时 15 毫秒
1.
Liquid chromatography-electrospray ionisation mass spectrometry was evaluated in the high-throughput analysis of microcystins and nodularins, cyanobacterial peptide hepatotoxins. Extracts originating from cyanobacterial strains and field material were separated on a 30 mm × 4 mm I.D. Merck Purospher STAR RP-18e column using a rapid gradient of aqueous formic acid and acetonitrile, ionised by electrospray technique and analysed on a Micromass Quattro II triple-quadrupole mass spectrometer operated in the selected ion recording (SIR) mode. The total analysis time per sample was 2.8 min corresponding to 514 samples a day. The system showed good robustness during a series of 320 repetitive injections of a field sample containing three major microcystins.  相似文献   
2.
The combination of hydrophilic interaction liquid chromatography with electrospray mass spectrometry (HILIC-MS) has been investigated as a tool for the analysis of assorted toxins produced by cyanobacteria. Toxins examined included saxitoxin and its various analogues (1-18), anatoxin-a (ATX-a, 19), cylindrospermopsin (CYN, 20), deoxycylindrospermopsin (doCYN, 21), and microcystins-LR (22) and -RR (23). The saxitoxins could be unequivocally detected in one isocratic analysis using a TSK gel Amide-80 column eluted with 65% B, where eluent A is water and B is a 95% acetonitrile/water solution, both containing 2.0 mM ammonium formate and 3.6 mM formic acid. The analysis of ATX-a, CYN and doCYN required 75% B isocratic. Simultaneous determination of 1-21 was also possible by using gradient elution. HILIC proved to be suitable for the analysis of microcystins, but peak shape was not symmetric and it was concluded that these compounds are best analysed using existing reversed-phase methods. The HILIC-MS method was applied to the analysis of field and cultured samples of Anabaena circinalis and Cylindrospermopsis raciborskii. In general, the method proved quite robust with similar results obtained in two different laboratories using different instrumentation.  相似文献   
3.
In a follow-up of the earlier characterisation of botulinum toxins type A and B (BTxA and BTxB) by mass spectrometry (MS), types C, D, E, and F (BTxC, BTxD, BTxE, BTxF) were now investigated. Botulinum toxins are extremely neurotoxic bacterial toxins, likely to be used as biological warfare agent. Biologically active BTxC, BTxD, BTxE, and BTxF are comprised of a protein complex of the respective neurotoxins with non-toxic non-haemagglutinin (NTNH) and, sometimes, specific haemagglutinins (HA). These protein complexes were observed in mass spectrometric identification. The BTxC complex, from Clostridium botulinum strain 003-9, consisted of a 'type C1 and D mosaic' toxin similar to that of type C strain 6813, a non-toxic non-hemagglutinating and a 33 kDa hemagglutinating (HA-33) component similar to those of strain C-Stockholm, and an exoenzyme C3 of which the sequence was in full agreement with the known genetic sequence of strain 003-9. The BTxD complex, from C. botulinum strain CB-16, consisted of a neurotoxin with the observed sequence identical with that of type D strain BVD/-3 and of an NTNH with the observed sequence identical with that of type C strain C-Yoichi. Remarkably, the observed protein sequence of CB-16 NTNH differed by one amino acid from the known gene sequence: L859 instead of F859. The BTxE complex, from a C. botulinum isolated from herring sprats, consisted of the neurotoxin with an observed sequence identical with that from strain NCTC 11219 and an NTNH similar to that from type E strain Mashike (1 amino acid difference with observed sequence). BTxF, from C. botulinum strain Langeland (NCTC 10281), consisted of the neurotoxin and an NTNH; observed sequences from both proteins were in agreement with the gene sequence known from strain Langeland. As with BTxA and BTxB, matrix-assisted laser desorption/ionisation (MALDI) MS provided provisional identification from trypsin digest peptide maps and liquid chromatography-electrospray (tandem) mass spectrometry (LC-ES MS) afforded unequivocal identification from amino acid sequence information of digest peptides obtained in trypsin digestion.  相似文献   
4.
Azaspiracid poisoning (AZP) is a new human toxic syndrome that is caused by the consumption of shellfish that have been feeding on harmful marine microalgae. A liquid chromatography–mass spectrometry (LC–MS) method has been developed for the determination of the three most prevalent toxins, azaspiracid (AZA1), 8-methylazaspiracid (AZA2) and 22-demethylazaspiracid (AZA3) as well as the isomeric hydroxylated analogues, AZA4 and AZA5. Separation of five azaspiracids was achieved on a C18 column (Luna-2, 150×2 mm, 5 μm) with isocratic elution using acetonitrile–water containing trifluoroacetic acid and ammonium acetate as eluent modifiers. Using an electrospray ionisation (ESI) source with an ion-trap mass spectrometer, the spectra showed the protonated molecules, [M+H]+, with most major product ions due to the sequential loss of two water molecules. A characteristic fragmentation pathway that was observed in each azaspiracid was due to the cleavage of the A-ring at C9–C10 for each toxin. It was possible to select unique ion combinations to distinguish between the isomeric azaspiracids, AZA4 and AZA5. Highly sensitive LC–MS3 analytical methods were compared and the detection limits were 5–40 pg on-column. Linear calibrations were obtained for AZA1 in shellfish in the range 0.05–1.00 μg/ml (r2=0.9974) and good reproducibility was observed with a relative standard deviation (%RSD) of 1.8 for 0.9 μg AZA1/ml (n=5). The %RSD values for the minor toxins, AZA4 and AZA5, using LC–MS3 (A-ring fragmentation) were 12.3 and 8.1 (0.02 μg/ml; n=7), respectively. The selectivity of toxin determination was enhanced using LC–MS–MS with high energy WideBand activation.  相似文献   
5.
Reversed-phase liquid chromatography-electrospray ionization mass spectrometry (LC-ESI-MS) was employed to analyze brevetoxin compounds associated with naturally occurring red tide blooms collected from Sarasota Bay, FL, USA. The LC-ESI-MS method utilizes a C18 microbore column with a mobile phase consisting of methanol-water (85:15, v/v), a flow-rate of 8 μl/min and a post-column split ratio of 3:1 (UV-absorbance detector-mass spectrometer). Three known brevetoxins Btx-2, Btx-1 and Btx-3 were detected at 60 μg/l, 10 μg/l and 5.7 μg/l levels, respectively, in the natrual red tide bloom samples. This distribution differed quantitatively from that found in red tide culture extract samples. Btx-9 was not detected either in natural red tide bloom extracts or in red tide culture extracts, possibly due to the instability of this compound. An unknown component with a molecular mass of 941 found in the natural bloom extract was postulated to have the structure of a reduced form (hydrogenation of two double bonds in the alkyl side chain) of Btx-5.  相似文献   
6.
The determination of biomedical markers and pathogens using electrochemical sensors is a well-established technique in which the transducer and the recognition element are used to detect the target molecule. There is a growing interest in molecularly imprinted polymer (MIPs) applications as promising recognition elements. The use of MIPs as recognition elements in electrochemical sensors offers the advantages of being fast, low cost, and, at the same time, provides accurate and selective results compared with other commonly applied routine methods for biomedical markers and pathogen detection. Compared with other nanomaterials and aptamer-based biosensors, MIP-based sensors offered excellent selectivity for low-priced reagents to be used. The aim of the current review is to discuss the most recent applications of MIP-based electrochemical sensors (2019–2021) as promising detection devices for some important biomarkers, enzymes, and pathogens, such as viruses, bacteria, and toxins.  相似文献   
7.
A novel amperometric HPLC detection method for the cyanobacterial (blue–green algal) peptide toxins microcystin-LR, -YR and -RR was developed. Purified microcystins and cyanobacterial extracts were chromatographed using an internal surface reversed-phase column with acetate- and phosphate-based mobile phase systems. Electrochemical oxidation reactions at 1.20 V vs. Ag/AgCl (glassy carbon working electrode) were shown to originate in arginine and tyrosine residues of microcystins.  相似文献   
8.
《Analytical letters》2012,45(9):1635-1645
Abstract

A new receptor based assay is described for the determination of toxins which have high affinities for the acetylcholine receptor. The method is based upon the hindrance of the normal binding of a synthetic enzyme-drug conjugate with a high affinity for the acetylcholine receptor protein by the presence of toxins acting as antagonists. The activity of the enzyme marker system, glucose-6-phosphate dehydrogenase covalently conjugated to desipramine, is monitored by colorimetric detection of the rate for NADH formation at 340 nm. The procedure proposed is designed to provide a simple toxin screen which can be done in a minimally equipped laboratory while achieving the required sensitivity. The technique is illustrated for snake venoms from Bungarus multicintus, Naja naja, and the alkaloid tubocurarine. Aspecific binding responses are shown to have minimal effect on the assay.  相似文献   
9.
Neurotoxins have evolved as molecules targeted specifically against molecules with an important function in the nervous system. Because of their selectivity they have been used as probes for detecting and characterizing key proteins of the nerve cell. Ion channels involved in the propagation of the action potential, proteins of presynaptic neurotransmitter exocytosis, and most importantly, neurotransmitter receptors have been and are presently being analyzed, in some cases already at atomic level by a combination of the tools of neurotoxins, molecular biology, and patch clamp electrophysiology. In this review a selection of these toxins is presented, together with their targets in the nervous system. Special emphasis is given to the recent breakthroughs in our understanding of the mechanism of action of tetanus and botulinum toxins and to the neurotoxins ranging from the plant alkaloid strychnine to the peptide toxins from poisonous snakes, which were fundamental in elucidating ligand-gated ion channels like the glycine and nicotinic acetylcholine receptors.  相似文献   
10.
A method earlier developed for the mass spectrometric (MS) identification of tetanus toxin (TTx) was applied to botulinum toxins type A and B (BTxA and BTxB). Botulinum toxins are extremely neurotoxic bacterial toxins, likely to be used as biological warfare agent. Biologically active BTxA and BTxB are comprised of a protein complex of the respective neurotoxins with specific haemagglutinins (HAs) and non-toxic non-haemagglutinins (NTNHs). These protein complexes are also observed in mass spectrometric identification. The particular BTxA complex, from Clostridium botulinum strain 62A, almost completely matched database data derived from genetic sequences known for this strain. Although no such database information was available for BTxB, from C. botulinum strain okra, all protein sequences from the complex except that of HA-70 were found to match proteins known from other type B strains. It was found that matrix-assisted laser desorption ionisation MS provides provisional identification from trypsin digest peptide maps and that liquid chromatography electrospray (tandem) mass spectrometry affords unequivocal identification from amino acid sequence information of digest peptides obtained in trypsin or pepsin digestion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号