首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   0篇
化学   21篇
  2023年   1篇
  2020年   1篇
  2019年   1篇
  2016年   1篇
  2014年   1篇
  2013年   2篇
  2011年   2篇
  2010年   2篇
  2009年   3篇
  2008年   3篇
  2007年   4篇
排序方式: 共有21条查询结果,搜索用时 15 毫秒
1.
A series of Diels-Alder reaction cross-linked thermosets with recyclability and healability were prepared from furan-containing aromatic polyamide and bismaleimides with different chemical structures.The structures of synthesized bismaleimides were confirmed by 1 H nuclear magnetic resonance(1 H-NMR)spectroscopy;their reversible cross-linking with the furanic polyamide was further detected by 1 H-NMR technique and sol-gel transition behavior.The dynamic mechanical analysis and tensile test revealed the variable thermal and mechanical properties of thermosets cross-linked by different bismaleimides and with different molar ratios of maleimide group to furan group(Ima/fur).The tensile test also demonstrated that the better recyclability and solvent-assisted healability of thermosets cross-linked could be achieved by more flexible bismaleimides.This work is expected to provide valuable information for design of recyclable and healable high-performance thermosets with desired properties.  相似文献   
2.
In this paper the synthesis and characterization of a new family reactive nematic oligomers based on 4-hydroxybenzoic acid (4-HBA) will be presented. We modified the backbone using para- and meta-substituted aromatic monomers such as terephthalic acid (TA), isophthalic acid (IA), hydroquinone (HQ), resorcinol (RS), 4,4′-bisphenol (BP) and 3-hydroxybenzoic acid (3-HBA). All oligomers, with a target Mn of 5000 and 9000 g mol−1, were end-capped with reactive phenylethynyl functionalities and synthesized using standard melt condensation techniques. Curing of the phenylethynyl reactive functionalities proceeds through chain extension and crosslinking, depending upon the temperature and time and can be carried out between 310 and 400 °C. Fully cured nematic thermosets could be obtained with glass-transition temperatures previously not accessible (Tg > 400 °C). The cured polymers exhibit excellent tensile properties, i.e. tensile strength (83 MPa) and elongation at break (9%). This approach allows us to prepare all-aromatic polymers with a combination of useful properties such as ease of processing, high Tg’s, and excellent mechanical properties.  相似文献   
3.
4.
Widely used traditional thermosets are good candidates for construction of 3D soft actuators because of their excellent stability; however, it is generally acknowledged that they cannot be reprocessed. The time–temperature equivalence principle enables reprocessing of traditional liquid crystalline epoxy thermosets (LCETs) into 3D soft actuators. Even though the transesterification reaction of LCETs is extremely slow, it is fast enough to induce a topology rearrangement and subsequent reprocessing when prolonging the transesterification time according to aforementioned principle. Therefore, LCETs can be aligned by a simple procedure. The alignment is quite stable at high temperature and remains after more than 1000 heating–cooling actuation cycles. The resulting 3D soft actuators are remouldable, reprogrammable, reconfigurable, weldable, self‐healable, recyclable, and stable, which is impossible for any traditional thermosets and is therefore a compelling advance in terms of the applications open to 3D soft actuators.  相似文献   
5.
Chemical degradation of diglycidyl ether of bisphenol A(DGEBA) epoxy resin cured with an aliphatic amine in supercritical 1-propanol was investigated under different reaction temperature and time. The combination of GC-MS and LC-MS proved that the epoxy resin was decomposed to five main products including phenol, 4-isopropylphenol, 4-isopropenylphenol, bisphenol A, and 4,4’-(cyclopropane-1,1-diyl)diphenol. The 13C-NMR results verified the chemical structures of the degradation products. The change of the products′ yield with time was evaluated by an effective means of HPLC. In addition, the GPC analysis confirmed the formation of soluble low molecular weight clusters during the degradation reaction. A possible free-radical reaction mechanism was proposed for chemical depolymerization of the epoxy resin in supercritical 1-propanol. After the homolytic cleavage of the aromatic ether linkages, the resulting bisphenol A biradical either produced 4,4’-(cyclopropane-1,1-diyl)diphenol after intramolecular rearrangement or generated bisphenol A after capturing hydrogen from 1-propanol.  相似文献   
6.
An aromatic triamine-based flame-retardant benzoxazine (3), which could not be prepared by the traditional approaches, was successfully prepared by a three-step procedure. The first step is the condensation of 2-hydroxybenzaldehyde with an aromatic triamine, forming intermediate (1) with an imine linkage. The second step is the reduction of the imine linkage by sodium borohydride, resulting in intermediate (2) with a secondary amine linkage. The third step is the ring closure condensation of (2), leading to benzoxazine (3). The structures of (1-3) were confirmed by IR, high-resolution mass, 1H and 31P NMR spectra. Benzoxazine (3) was copolymerized with commercial benzoxazines. According to the measurements, thermal properties, flame retardancy, dimensional stability of commercial polybenzoxazines were significantly improved via the incorporation of (3).  相似文献   
7.
Rheological properties of vinyl ester-polyester resin suspensions containing various amounts (0.05, 0.1 and 0.3 wt.%) of multi walled carbon nanotubes (MWCNT) with and without amine functional groups (-NH2) were investigated by utilization of oscillatory rheometer with parallel plate geometry. Dispersion of corresponding carbon nanotubes within the resin blend was accomplished employing high shear mixing technique (3-roll milling). Based on the dynamic viscoelastic measurements, it was observed that at 0.3 wt.% of CNT loadings, storage modulus (G′) values of suspensions containing MWCNTs and MWCNT-NH2 exhibited frequency-independent pseudo solid like behavior especially at lower frequencies. Moreover, the loss modulus (G″) values of the resin suspensions with respect to frequency were observed to increase with an increase in contents of CNTs within the resin blend. In addition, steady shear viscosity measurements implied that at each given loading rate, the resin suspensions demonstrated shear thinning behavior regardless of amine functional groups, while the neat resin blend was almost the Newtonian fluid. Furthermore, dynamic mechanical behavior of the nanocomposites achieved by polymerizing the resin blend suspensions with MWCNTs and MWCNT-NH2 was investigated through dynamic mechanical thermal analyzer (DMTA). It was revealed that storage modulus (E′) and the loss modulus (E″) values of the resulting nanocomposites increased with regard to carbon nanotubes incorporated into the resin blend. In addition, at each given loading rate, nanocomposites containing MWCNT-NH2 possessed larger loss and storage modulus values as well as higher glass transition temperatures (Tg) as compared to those with MWCNTs. These findings were attributed to evidences for contribution of amine functional groups to chemical interactions at the interface between CNTs and the resin blend matrix. Transmission electron microscopy (TEM) studies performed on the cured resin samples approved that the dispersion state of carbon nanotubes with and without amine functional groups within the matrix resin blend was adequate. This implies that 3-roll milling process described herein is very appropriate technique for blending of carbon nanotubes with a liquid thermoset resin to manufacture nanocomposites with enhanced final properties.  相似文献   
8.
Ytterbium and lanthanum triflates were used as cationic initiators to cure mixtures of diglycidylether of bisphenol A (DGEBA) and Meldrum acid (MA) in several proportions of comonomers and initiators. The evolution of epoxy and lactone groups during curing, and of linear ester formed in the final materials were evaluated by Fourier transform infrared in the attenuated-total-reflection mode (FTIR/ATR).

The global evolution of the curing process was investigated by calorimetric analysis and the activation energy was calculated by isoconversional procedures.

Shrinkage on curing and thermal degradability of the final materials on varying the initiator and the proportion of Meldrum acid in the mixtures were evaluated. The expandable character of MA was confirmed. The materials obtained were more degradable than conventional epoxy resins due to the tertiary ester groups incorporated into the network by copolymerization, especially those obtained with ytterbium triflate. On increasing the proportion of initiator the degradability was also increased.  相似文献   

9.
Two kinds of difunctionalized isosorbide derivatives containing norbornene groups were designed and synthesized by a facile one-step reaction under mild conditions.~1H NMR spectroscopy confirmed the chemical composition and differential scanning calorimetry(DSC) revealed the distinct curing behaviors between conventional petroleum-based dicyclopentadiene(DCPD) and synthesized renewable isosorbided-based monomer(ISN). In contrast to DCPD, ISN was low viscous liquid at room temperature and had even higher reactivity to perform ring-opening metathesis polymerization(ROMP) in the presence of Grubbs' catalyst. Due to the presence of flexible and elastic Si–C long chains, the cured poly(ISN) thermosets not only had good mechanical properties but also exhibited much higher storage modulus at the rubbery state in comparison with traditional poly(DCPD).  相似文献   
10.
Mixtures of diglycidyl ether of bisphenol A (DGEBA) with γ-valerolactone (γ-VL) 2:1 (mol/mol) with different organically modified clays were cationically copolymerized in the presence of scandium, ytterbium or lanthanum triflates as initiators. The cure process was followed by calorimetry and rheological techniques. The differences in the gelation time on adding clays were studied by rheological measurements. These methods, in addition to FTIR studies of the cure process allowed selection of the best initiator and its concentration to achieve creation of the nanocomposite. The enhanced thermal stability of the nanocomposites was confirmed by thermogravimetric analysis (TGA). The intercalated morphology of the nanocomposites obtained was confirmed by transmission electron microscopy. The nanocomposites prepared showed a more plastic fracture surface than the unfilled material. Thermomechanical characteristics were also studied.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号