首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   0篇
化学   32篇
  2021年   1篇
  2019年   1篇
  2017年   1篇
  2014年   1篇
  2012年   1篇
  2010年   2篇
  2009年   2篇
  2008年   2篇
  2007年   3篇
  2006年   3篇
  2005年   2篇
  2004年   4篇
  2003年   4篇
  2002年   3篇
  1999年   1篇
  1988年   1篇
排序方式: 共有32条查询结果,搜索用时 15 毫秒
1.
Triacetyl α-cyclodextrin, triacetyl β-cyclodextrin and triacetyl γ-cyclodextrin were tested as possible hydrophobic carriers to prolong the release of hydrophilic teicoplanin (TCP). Physical–chemical characterization of individual components, drug-carrier physical mixtures at 0.5, 0.67 and 0.75 mass fraction of carrier, and the respective interaction products by kneading or evaporative crystallization under microwave irradiation was carried out using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). In vitro drug release in pH 7.4 phosphate buffer at 37 °C was determined by intrinsic dissolution rate (IDR) measurements on non disintegrating compressed discs. Solid-state interactions of TCP with triacetyl α-cyclodextrin by evaporative crystallization and kneading and with triacetyl β-cyclodextrin by evaporative crystallization (probably resulting in carrier amorphization) were demonstrated. The role of carrier hydrophobicity, carrier mass fraction and preparation method of solid drug-carrier combinations on solid-state drug-carrier interactions and slowing down of TCP release was assessed. Modulation of drug release can be achieved using TCP-triacetyl γ-cyclodextrin combinations at 0.5 mass fraction of carrier.  相似文献   
2.
Summary The chiral discrimination of phenoxypropionic acid herbicides by reversed-phase chromatography on a teicoplanin phase has been re-examined using the perturbation method to calculate the solute distribution isotherms. The effects of both temperature and the methanol (organic modifier) content of the mobile phase on the chiral discrimination mechanism were well described by the bi-Langmuir model. The method confirmed a change in the mechanism of enantiomer retention at a critical temperature, T*, and showed that the mechanism was independent of (i) herbicide molecular structure, i.e. the position of the chloro group on the phenol ring, and (ii) the absolute configuration of the carbon atom. Enantioselectivity was enhanced by increasing the mobile phase methanol content. Use of this approach also revealed that secondary sites on the teicoplanin surface were involved in the processes determining both retention and selectivity. It was clearly demonstrated that these secondary sites of low affinity were not affected by the temperature change and were not involved in the chiral recognition mechanism.  相似文献   
3.
Partial filling multiple injection affinity capillary electrophoresis (PFMIACE) is used to determine binding constants between vancomycin (Van) from Streptomyces orientalis, teicoplanin (Teic) from Actinoplanes teicomyceticus and ristocetin (Rist) from Nocardia lurida to d-Ala-d-Ala terminus peptides and carbonic anhydrase B (CAB, E.C.4.2.1.1) to arylsulfonamides. Two variations of PFMIACE are described herein. In the first technique, the capillary is partially filled with ligand at increasing concentrations, a non-interacting standard, three or four separate plugs of receptor each separated by small plugs of buffer, a plug containing a second non-interacting standard, and then electrophoresed in buffer. Upon continued electrophoresis, equilibrium is established between the ligand and receptors causing a shift in the migration time of the receptors with respect to the non-interacting standards. This change in migration time is utilized for estimating multiple binding constants (Kb) for the same interaction. In the second technique, separate plugs of sample containing non-interacting standards, peptide one, buffer, and peptide two, were injected into the capillary column. The capillary is partially filled with a series of buffers containing an antibiotic at increasing concentrations and electrophoresed. Peptides migrate through the column at similar electrophoretic mobilities since their charge-to-mass ratios are approximately the same but remain as distinct zones due to the buffer plug between peptides. Upon electrophoresis, the plug of antibiotic flows into the peptide plugs affecting a shift in the migration time of the peptides with respect to the non-interacting standards occurs due to formation of the of the antibiotic-peptide complex. The shift in the migration time of the peptides upon binding to the antibiotic is used for the Scatchard analysis and measurement of a Kb. The PFMIACE technique expands the functionality and potential of ACE as an analytical tool to examine receptor-ligand interactions. In PFMIACE, a smaller amount of sample is required in the assay compared to both conventional ACE and MIACE. Furthermore, a wide array of data is obtained from a single experiment, thus, expediting the assay of biological species.  相似文献   
4.
Multiple-injection affinity capillary electrophoresis (MIACE) is used to determine binding constants (K b) between receptors and ligands using as model systems vancomycin and teicoplanin from Streptomyces orientalis and Actinoplanes teichomyceticus, respectively, and their binding to D-Ala-D-Ala peptides and carbonic anhydrase B (CAB. EC 4.2.1.1) and the binding of the latter to arylsulfonamides. A sample plug containing a non-interacting standard is first injected followed by multiple plugs of sample containing the receptor and then a final injection of sample containing a second standard. Between each injection of sample, a small plug of buffer is injected which contains an increasing concentration of ligand to effect separation between the multiple injections of sample. Electrophoresis is then carried out in an increasing concentration of ligand in the running buffer. Continued electrophoresis results in a shift in the migration time of the receptor in the sample plugs upon binding to their respective ligand. Analysis of the change in the relative migration time ratio (RMTR) or electrophoretic mobility (μ) of the resultant receptor–ligand complex relative to the non-interacting standards, as a function of the concentration of ligand yields a value for K b. The MIACE technique is a modification in the ACE method that allows for the estimation of binding affinities between biological interactions on a timescale faster than that found for standard ACE. In addition sample volume requirements for the technique are reduced compared to traditional ACE assays. These findings demonstrate the advantage of using MIACE to estimate binding parameters between receptors and ligands.  相似文献   
5.
This work utilizes on-column ligand synthesis and affinity capillary electrophoresis (ACE) to determine binding constants (Kb) of 9-flourenylmethyloxy carbonyl (Fmoc)-amino acid derivatives to the glycopeptide antibiotics ristocetin (Rist) and teicoplanin (Teic). In this technique, two separate plugs of sample are injected on to the capillary column and electrophoresed. The initial sample plug contains a d-Ala-d-Ala terminus peptide and either one or two non-interacting standard(s). The second plug contains a Fmoc-amino acid-N-hydroxysuccinimide (NHS) ester. The electrophoresis is then carried out with an increasing concentration of Rist or Teic in the running buffer. Upon electrophoresis the initial d-Ala-d-Ala peptide reacts with the Fmoc-amino acid yielding a new Fmoc-amino acid-d-Ala-d-Ala peptide derivative. Continued electrophoresis results in the binding of Rist or Teic to the Fmoc-amino acid-d-Ala-d-Ala peptide derivatives. Analysis of the change in the relative migration time ratio (RMTR) or electrophoretic mobility () of the Fmoc-amino acid-d-Ala-d-Ala peptide derivatives relative to the non-interacting standards, as a function of the concentration of Rist and Teic, yields a value for Kb. These findings demonstrate the advantage of coupling on-column ligand synthesis to ACE for estimating binding parameters between antibiotics and ligands.Abbreviations Rist Ristocetin - Teic Teicoplanin - ACE Affinity capillary electrophoresis - RMTR Relative migration time ratio  相似文献   
6.
Teicoplanin (teic) from Actinoplanes teichomyceticus is a glycopeptide antibiotic used to treat many Gram-positive bacterial infections. Glycopeptide antibiotics inhibit bacterial growth by binding to carboxy-terminal d-Ala-d-Ala intermediates in the peptidoglycan of the cell wall of Gram-positive bacteria. In this paper we report the derivatization of magnetic microspheres with teic (teic-microspheres). Fluorescence-based techniques have been developed to analyze the binding properties of the microspheres to two d-Ala-d-Ala terminus peptides. The dissociation constant for the binding of carboxyfluorescein-labeled d-Ala-d-Ala-d-Ala to teic on microspheres was established via fluorimetry and flow cytometry and was determined to be 0.5 × 10−6 and 3.0 × 10−6 mol L−1, respectively. The feasibility of utilizing microparticles with fluorescence methods to detect low levels (the limit of bacterial detection was determined to be 30 colon-forming units; cfu) of Gram-positive bacteria has been demonstrated. A simple microfluidic experiment is reported to demonstrate the possibility of developing microsphere-based affinity assays to study peptide–antibiotic interaction.  相似文献   
7.
Construction of three novel enantioselective, potentiometric membrane electrodes based on carbon paste impregnated with different macrocyclic antibiotics vancomycin and teicoplanin as chiral selectors are described. The solutions for the construction of electrodes were prepared in phosphate buffer pH 4 for the vancomycin-based electrode (VCM), pH 6 and pH 6/40% acetonitrile solutions for teicoplanin-based electrodes, TCP I and II, respectively. The proposed electrodes were applied in the assay of S-flurbiprofen raw material and its pharmaceutical formulation by use of direct potentiometry, VCM electrode exhibiting the best enantioselectivity. The surfaces of the electrodes are easily renewable by simply polishing on an alumina paper.  相似文献   
8.
Baseline separation of the enantiomers of a number of negatively charged amino and mandelic acid derivatives was achieved in less than 10 min by capillary electrophoresis in a polyacrylamide coated capillary, using the “partial filling method” (PFM) with submillimolar concentration of Teicoplanin (TE) as the chiral selector. The influence of the charge and concentration of TE, electrolyte solution composition and pH, on the enantioresolution was examined. Further proofs were brought to corroborate the hypothesis that the enantiorecognition takes place at the D-Ala-D-Ala binding site, whose blockade is responsible for the antibacterial activity of glycopeptide antibiotics. While the dependence of the chiral recognition capabilities of TE on electrolyte solution composition and pH could limit its applicability, improved sensitivity, reduction of TE wall adsorption, resulting in a good efficiency, and high cost reduction, due to the very small amount of chiral selector required, were shown as advantages of the PFM adopted in this study.  相似文献   
9.
Summary Teicoplanin, a lipoglycopeptide antibiotic active against gram-positive bacteria, is produced as a complex mixture consisting of six major components and four chemically related minor cmmponents. Preparative HPLC was used to isolate small amounts of the pure minor components, in order to determine their structures. In the present paper the isolation procedures are presented, as well as the analytical HPLC conditions. The retention times of the minor components with respect to those of the more abundant compounds, permittedus to make hypotheses on their structures, which were then confirmed by NMR and FAB-MS investigations.  相似文献   
10.
以国产大环抗生素替考拉宁为手性选择剂制备了替考拉宁键合手性固定相(Tei-CSP),在反相条件下考察了键合相对华发令、西孟旦等手性药物、α-氨基酸(羟基酸)、衍生α-氨基酸的拆分效果。实验结果表明,在反相条件下,疏水(亲水)作用、静电作用对手性化合物在柱上的保留以及对映体的拆分起到了非常重要的作用;氨基酸在衍生前后,其在柱上的保留和手性识别机理发生了改变,衍生前,亲水作用参与保留机理,而衍生后,由于疏水作用增强,疏水作用参与保留,对映体在较低的有机改性剂条件下才能获得较好的分离。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号