首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   0篇
  国内免费   4篇
化学   19篇
物理学   7篇
  2020年   3篇
  2019年   2篇
  2017年   1篇
  2014年   2篇
  2013年   9篇
  2012年   1篇
  2011年   2篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
排序方式: 共有26条查询结果,搜索用时 31 毫秒
1.
Additive manufacturing offers a useful and accessible tool for prototyping and manufacturing small volume functional parts. Polylactic acid (PLA) and thermoplastic polyurethane (TPU) are amongst the most commonly used materials. Characterising 3D printed PLA and TPU is potentially important for both designing and finite element modelling of functional parts. This work explores the mechanical properties of additively manufactured PLA/TPU specimens with consideration to design parameters including size, and infill percentage. PLA/TPU specimens are 3D-printed in selected ISO standard geometries with 20%, 60%, 100% infill percentage. Tensile and compression test results suggest that traditional ISO testing standards might be insufficient in characterising 3D printed materials for finite element modelling or application purposes. Infill percentage in combination to design size, may significantly affect the mechanical performance of 3D printed parts. Dimensional variation may cause inhomogeneity in mechanical properties between large and small cross section areas of the same part. The effect was reduced in small cross section parts where reducing the nominal infill had less effect on the resulting specimens. The results suggest that for 3D printed functional parts with significant dimensional differences between sections, the material properties are not necessarily homogeneous. This consideration may be significant for designers using 3D printing for applications, which include mechanical loading.  相似文献   
2.
The application of chitosan (CS) in new materials is a hot research topic. In this paper, CS was used alone as flame retardant to prepare thermoplastic polyurethane elastomer (TPU) composites. Then, the flame retardancy and thermal decomposition behavior of TPU/CS composites were intensively investigated using cone calorimeter test (CCT), scanning electron microscope (SEM), microscale combustion colorimeter (MCC) test, thermogravimetric analysis/infrared spectrometry (TG‐IR), and gas chromatography‐mass spectrometry (GC‐MS). The results showed that CS can reduce the fire risk of TPU; 2.0‐wt% CS could make the peak value of heat release rate (pHRR) decreased to 457.2 kW/m2, reduced by 65.9% compared with TPU. And the peak value of smoke production rate (pSPR) and total smoke release (TSR) of the same sample was decreased by 79.4% and 54.2%, respectively. The TG‐IR and GC‐MS results confirmed that CS could promote TPU decomposition in advance, reacting with the decomposition products of TPU. Therefore, the production of combustible gas was reduced. The GC‐MS results showed that the production of isocyanates and ethers was reduced with the addition of CS. The digital photographs of SEM for the samples after CCT were shown that the char residue layer of the sample containing 2.0‐wt% CS was fibrous in shape. It could be speculated that the thermal decomposition products from TPU could react with CS at low temperature, which reduced the production of flammable gases. So CS had a good prospect in reducing the fire hazard for TPU.  相似文献   
3.
Investigation on a new electrospun gel polymer electrolyte consisting of thermoplastic polyurethane (TPU) and poly(vinylidene fluoride) (PVdF) has been made. Its characteristics were investigated by scanning electron microscopy, FT-IR, Differential Scanning Calorimeter (DSC) analysis. This kind of gel polymer electrolyte had a high ionic conductivity about 3.2 × 10− 3 S cm− 1 at room temperature, and exhibited a high electrochemical stability up to 5.0 V versus Li+/Li, good mechanical strength and stability to allow safe operation in rechargeable lithium-ion polymer batteries. A Li/GPE/LiFePO4 cell delivered a high discharge capacity when it was evaluated at 0.1 °C—rate at 25 °C (167.8 mAh g− 1). And a very stable cycle performance also existed under this low current density.  相似文献   
4.
Highly oriented self-reinforced 80/20 blends of polylactide (PLA)/thermoplastic polyurethane elastomer (TPU) were successfully fabricated through solid hot stretching technology. Different from the isotropic sample, stress rose rapidly in a low strain region, and exhibited strain hardening for the drawn samples of the PLA/TPU blend. Superior mechanical properties of the blend, with the notched Charpy impact strength 150 KJ/m2, and tensile strength 197 MPa, were achieved. With increasing hot stretch ratio, the storage modulus increased, the glass transition temperatures of the PLA-rich phase and TPU-rich phase in the blends moved to higher temperatures, and the melting temperature and crystallinity of the blend increased, indicating the stress-induced crystallization of the blend during drawing. The longitudinal fracture surfaces of the blends at different stretch ratios exhibited orderly arranged fibrillar bundle structure, which contributed to the significantly higher strength and toughness of the blend.  相似文献   
5.
Thermoplastic elastomers (TPEs) based on new generation ultrahigh molecular weight styrene‐ethylene‐butylene‐styrene (SEBS) and thermoplastic polyurethane (TPU) are developed and characterized especially for automotive applications. Influence of maleic anhydride grafted styrene‐ethylene‐butylene‐styrene (SEBS‐g‐MA) and maleic anhydride grafted ethylene propylene rubber (EPM‐g‐MA) as compatibilizers has been explored and compared on the blends of SEBS/TPU (60:40). The amount of compatibilizers was varied from 0 to 10 phr. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) studies revealed the dramatic changes from a nonuniform to finer and uniform dispersed phase morphology. This was reflected in various mechanical properties. SEBS‐g‐MA modified blends showed higher tensile strength. EPM‐g‐MA modified blends also displayed considerable improvement. Elongation at break (EB) was doubled for the entire compatibilized blends. Fourier‐transform infrared spectrometry (FTIR) confirmed the chemical changes in the blends brought about by the interactions between blend components and compatibilizers. Both SEBS‐g‐MA and EPM‐g‐MA had more or less similar effects in dynamic mechanical properties of the blends. Additionally, melt rheological studies have also been pursued through a rubber process analyzer (RPA) to get a better insight.  相似文献   
6.
以PVC,TPU为主要原料,加入发泡剂AC,交联剂DCP,空心玻璃微珠及其他助剂经模压成型制备了PVC/TPU轻质材料.通过密度以及机械性能测试研究了TPU用量、DCP用量和空心玻璃微珠含量对PVC/TPU轻质材料性能的影响,用红外光谱研究材料基团的变化,通过凝胶含量测试交联体系凝胶量,用SEM扫描电镜表征了材料的泡孔形状、尺寸以及排列.聚酯型TPU能够提高轻质材料弯曲和冲击强度,TPU加入10份时,共混体系的表观密度最低,为0.30 g/cm3.表观密度随着交联剂DCP的添加先降低后增大,红外表征和凝胶含量测试证实轻质材料体系产生了交联结构.空心玻璃微珠的加入,使得PVC/TPU轻质材料的表观密度和综合机械性能提高明显,即使加入20份空心玻璃微珠密度始终小于1.0 g/cm3.SEM表明,DCP的加入使得泡孔更完整且不易破孔,泡孔壁更厚;空心玻璃微珠分布在泡孔壁上,起到引发泡孔和支撑负荷的作用.  相似文献   
7.
环氧树脂/聚氨酯共混体系相行为研究   总被引:7,自引:0,他引:7  
利用小角光散射 (SALS)技术实时记录了环氧树脂 聚氨酯共混体系在固化过程中的相行为发展情况 ,得到了表征共混体系相区结构尺寸大小的相关距离ac 和表征体系均匀程度的均方介电常数涨落 η2 ,讨论了等温固化条件下 ,环氧树脂 聚氨酯共混体系的相区大小随时间的变化规律 .实验结果表明 ,环氧树脂 聚氨酯共混体系的固化过程是典型的反应诱导相分离的过程 .相分离初期 ,符合Cahn的线性理论 ;随着固化时间的延长 ,相区由小变大 ,约至反应开始后 3 2 1 0s,相分离趋于平衡态 ,相区尺寸趋于稳定  相似文献   
8.
Segmented, nonchain extended polyurethanes and polyureas based on PTMO soft segments (SS) and hard segments (HSs) based on only single molecules of a diisocyanate were synthesized. Type and nature of the diisocyanate was systematically varied in order to analyze the effect of HS symmetry and type of linkage between the HS and SS on the structure‐property relationship of these segmented copolymers. Results showed that the increased symmetry of the diisocyanates allows a more efficient packing of the HSs which leads to a microphase‐separated structure with the crystalline hard ribbon or thread‐like domains percolated throughout the SS matrix, even with a low HS content (ca. 13 wt.%). The service window of these segmented copolymers was significantly influenced by the symmetry and type of linkage between the HS and SS. Most copolymers also showed evidence of strain hardening accented by the strain induced crystallization of the PTMO SS.  相似文献   
9.
The effect of steam on the micro‐phase structure and mechanical properties of different block copolymers used in biomedical devices is investigated via FT‐IR, tensile tests and dynamic mechanical analysis (DMA). Steam sterilization, commonly performed on medical devices and simulated in this work, affects the copolymers' morphology, due to high temperature and humidity conditions. FT‐IR analysis reveals that steam induces a modification in the crystalline conformations of copolymers with a pre‐existing hydrogen bonding network, that is, thermoplastic polyurethanes (TPU) and poly(ether‐block‐amide) (PEBA), while it does not significantly affect the domain conformation in styrenic block copolymers (SEBS), due to weak interaction with water. As a consequence, relevant changes of the mechanical properties, closely related to the microdomain structure, are found for TPU and PEBA after sterilization, while SEBS mechanical behavior remains stable, as demonstrated by tensile tests and DMA results. For this reason, SEBS is suggested as the best choice in terms of durability in biomedical applications. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1337–1346  相似文献   
10.
聚乳酸/聚氨酯共混体系相容性研究   总被引:2,自引:1,他引:2  
采用热塑性聚氨酯弹性体(TPU)作为改性剂来增韧聚乳酸(PLA),通过溶度参数法、聚合物混合焓变法预测了TPU和PLA的相容性,并且通过稀溶液粘度法、动态热机械分析(DMA)及扫描电镜(SEM)对两者相容性进行表征,结果显示PLA和TPU为部分相容体系.共混溶液的粘度与组成含量的变化呈非线性关系;PLA/TPU共混膜的...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号