首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   180篇
  免费   18篇
  国内免费   16篇
化学   208篇
物理学   6篇
  2023年   2篇
  2022年   4篇
  2021年   5篇
  2020年   11篇
  2019年   8篇
  2018年   9篇
  2017年   8篇
  2016年   9篇
  2015年   11篇
  2014年   12篇
  2013年   15篇
  2012年   13篇
  2011年   8篇
  2010年   12篇
  2009年   9篇
  2008年   18篇
  2007年   10篇
  2006年   9篇
  2005年   8篇
  2004年   7篇
  2003年   5篇
  2002年   2篇
  2001年   5篇
  2000年   6篇
  1999年   4篇
  1998年   3篇
  1997年   1篇
排序方式: 共有214条查询结果,搜索用时 15 毫秒
1.
The synthesis of rod-coil diblock copolymers was achieved for the firsttime by TEMPO-mediated "living" free radical polymerization of styrene and 2,5-bis[(4-methoxyphenyl)oxycarbonyl]styrene(MPCS). The block architecture of the two diblockcopolymers thus prepared, MPCS-b-St(5400/2400) and MPCS-b-St(10800/8700), was con-firmed by GPC, DSC studies and the formation of multimolecular micelles.  相似文献   
2.
The first TEMPO-mediated "living" free radical polymerization of liquid crystallinemonomer, 2, 5-bis[(4-methoxyphenyl)oxycarbonyl]styrene(MPCS), was carried out at 130℃ withBPO as an initiator. The molecular weight of the polymer can be varied from rather low values to highvalues while maintaining narrow polydispersity. It was observed that the polymerization of MPCSproceeded much faster than that of styrene. A tentative explanation for this fast polymerization wassuggested.  相似文献   
3.
Well‐defined graft copolymers with styrene butadiene rubber (SBR) backbones and polystyrene branches were synthesized by living free radical polymerization (LFRP) techniques. Thus 1‐ benzoyl‐2‐phenyl‐2‐(2′,2′,6′,6′‐tetramethyl‐piperidinyl‐1′‐oxy)ethane (BZ‐TEMPO) was synthesized and hydrolyzed to the corresponding 1‐hydroxyl derivative. This functional nitroxyl compound was coupled with brominated SBR (SBR‐Br). The resulting macroinitiator (SBR‐TEMPO) for “living” free radical polymerization was then heated in the presence of styrene for the formation of the controlled graft copolymer. 1H‐NMR and IR spectroscopy were used to investigate the structure of the polymers. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
4.
Nitroxide‐mediated ‘living’ free radical polymerisation (LREP) was employed for the first time to prepare graft copolymer by having arylated poly (vinyl chloride) (PVC‐Ph) as a backbone and polystyrene (PS) as branches. The graft copolymerization of styrene was initiated by arylated PVC carrying 2,2,6,6‐tetramethyl‐1‐piperidinyloxy (TEMPO) groups as a macroinitiator. Thus, the arylated PVC was prepared in the mild conditions and these reaction conditions could overcome the problem of gelation and crosslinking in polymers. Then, 1‐hydroxy TEMPO was synthesized by the reduction of TEMPO with sodium ascorbate. This functional nitroxyl compound was coupled with brominated arylated PVC (PVC‐Ph‐Br). The resulting macro‐initiator (PVC‐Ph‐TEMPO) for ‘living’ free radical polymerization was then heated in the presence of styrene to form graft copolymer. DSC, GPC, 1HNMR, and FT‐IR spectroscopy were employed to investigate the structure of the polymers. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
5.
Copper(II) complex 1 catalyzes the oxidation of sulfides to sulfoxides with 30% H2O2 in high yields. Addition of a catalytic amount of TEMPO to the reaction mixture enhances the conversion and selectivity. Complex 1 can be recycled without loss of activity.  相似文献   
6.
Natural products are an excellent source of inspiration for the development of new drugs. Among them, betalains have been extensively studied for their antioxidant properties and potential application as natural food dyes. Herein, we describe the seven-step synthesis of new betalamic acid analogs without carboxy groups in the 2- and 6-position with an overall yield of ~70%. The Folin–Ciocalteu assay was used to determine the antioxidant properties of protected intermediate 21. Additionally, the five-step synthesis of betalamic acid analog 35 with three ester moieties was performed. Using NMR techniques, the stability of the obtained compounds towards oxygen was analyzed.  相似文献   
7.
In this study, we present a versatile and easy procedure for modifying a cobalt ferrite nanoparticle step by step. A new nanocatalyst was prepared via CuII immobilized onto CoFe2O4@HT@Imine. The catalyst was fully characterized by Fourier‐transform infrared (FT‐IR), energy‐dispersive X‐ray spectroscopy (EDX), field emission scanning electron microscopy (FE‐SEM), X‐ray diffraction (XRD), and vibrating sample magnetometer (VSM) analyses. The current procedure as a green protocol offers benefits including a simple operational method, an excellent yield of products, mild reaction conditions, minimum chemical wastes, and short reaction times. Without any significant reduction in the catalytic performance, up to five recyclability cycles of the catalyst were obtained. The optimization results suggest that the best condition in the oxidation of benzyl alcohol derivatives is 0.003 g of the CoFe2O4@HT@Imine‐CuII catalyst, TEMPO, at 70°C under solvent‐free condition and air.  相似文献   
8.
Low‐temperature generation of P‐nitroxyl phosphane 2 (Ph2POTEMP), which was obtained by the reaction of Ph2PH ( 1 ) with two equivalents of TEMPO, is presented. Upon warming, phosphane 2 decomposed to give P‐nitroxyl phosphane P‐oxide 3 (Ph2P(O)OTEMP) as one of the final products. This facile synthetic protocol also enabled access to P‐sulfide and P‐borane derivatives 7 and 13 , respectively, by using Ph2P(S)H ( 6 ) or Ph2P(BH3)H ( 11 ) and TEMPO. Phosphane sulfide 7 revealed a rearrangement to phosphane oxide 8 (Ph2P(O)STEMP) in CDCl3 at ambient temperature, whereas in THF, thermal decomposition of sulfide 7 yielded salt 10 ([TEMP‐H2][Ph2P(S)O]). As well as EPR and detailed NMR kinetic studies, indepth theoretical studies provided an insight into the reaction pathways and spin‐density distributions of the reactive intermediates.  相似文献   
9.
Selective processing of the β-O-4 unit in lignin is essential for the efficient depolymerisation of this biopolymer and therefore its successful integration into a biorefinery set-up. An approach is described in which this unit is modified to incorporate a carboxylic ester with the goal of enabling the use of mild depolymerisation conditions. Inspired by preliminary results using a Cu/TEMPO/O2 system, a protocol was developed that gave the desired β-O-4-containing ester in high yield using certain dimeric model compounds. The optimised reaction conditions were then applied to an oligomeric lignin model system. Extensive 2D NMR analysis demonstrated that analogous chemistry could be achieved with the oligomeric substrate. Mild depolymerisation of the ester-containing oligomer delivered the expected aryl acid monomer.  相似文献   
10.
The composition of copolymers formed at 50°C in ethyl acrylate/ styrene/azo-bis-isobutyronitrile/benzene systems of different composition was investigated. The experimental composition data (based on the elementary analysis of copolymers) were evaluated by the η-ζ transformation method. Finite monomer conversions were taken into account. The classical composition equation was found to describe the system under investigation. The reactivity ratios are p 1 = 0.152 ± 0.006; p 2 = 0.787 ± 0.023. The free radical copolymerization of ethyl acrylate and styrene has been investigated in benzene solution at 50°C. Our results on the initiation kinetics were disclosed in our recent publication [1]. Now we are reporting on our studies concerning the composition of ethyl acrylate/styrene copolymers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号