首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   102篇
  免费   0篇
  国内免费   2篇
化学   15篇
力学   50篇
数学   10篇
物理学   29篇
  2023年   2篇
  2022年   1篇
  2020年   4篇
  2019年   1篇
  2017年   3篇
  2016年   5篇
  2015年   4篇
  2014年   15篇
  2013年   6篇
  2012年   4篇
  2011年   7篇
  2010年   6篇
  2009年   6篇
  2008年   3篇
  2007年   5篇
  2006年   9篇
  2005年   4篇
  2004年   2篇
  2003年   2篇
  2002年   3篇
  2001年   1篇
  1998年   2篇
  1996年   2篇
  1995年   4篇
  1990年   1篇
  1988年   1篇
  1984年   1篇
排序方式: 共有104条查询结果,搜索用时 15 毫秒
1.
碳纤维增强复合材料反射镜的刚度分析   总被引:3,自引:2,他引:1  
初昶波  周绍祥 《光子学报》2004,33(2):240-243
用有限元法对层合板结构和蜂窝夹层结构的两种复合材料反射镜的刚度进行分析计算,分析是以Ex1522环氧树脂为基体,M60J碳为增强材料的平面反射镜为例进行的,分析包括不同铺层取向、顺序的层合板反射镜自重下的镜面变形;对蜂窝夹层结构反射镜,分别比较了以芳纶纸、玻璃布、耐久铝三种夹层材料的反射镜刚度,对比了碳纤维复合材料、铍金属、微晶玻璃为面板材料的反射镜刚度,讨论了不同蜂窝单元结构形状对反射镜刚度的影响.分析表明,对于以Ex1522环氧树脂为基体,M60J碳为增强材料的平面复合材料反射镜,要使其具有相对稳定的面形,应采用单元形状为正三角形铝蜂窝,前后面板各为12层;90/45/0/-45]3层合板的夹层结构.  相似文献   
2.
The effect of the sorbital nucleating agent on properties of the ethylene-octene copolymer (POE) toughened polypropylene (PP) was studied. The results show that the addition of POE increases notched Izod and Charpy impact strength significantly but impair the tensile strength and flexural modulus. As a nucleating agent (1,3,2,4-di(p-methylbenzylidene) sorbitol, DM) was added, the toughness and stiffness of toughed PP increased simultaneously at the same content of POE. This result shows that the toughness and stiffness of toughed PP are in balance. Polarized light microscopy analysis shows that with the addition of POE and nucleating agent, only a low level of PP spherulites were observed.  相似文献   
3.
In this study, biodegradable polylactic acid (PLA) and PLA nanocomposite scaffolds reinforced with magnetic and conductive fillers, were processed via fused filament fabrication additive manufacturing and their bioactivity and biodegradation characteristics were examined. Porous 3D architectures with 50% bulk porosity were 3D printed, and their physicochemical properties were evaluated. Thermal analysis confirmed the presence of ~18 wt% of carbon nanostructures (CNF and GNP; nowonwards CNF) and ~37 wt% of magnetic iron oxide (Fe2O3) particles in the filaments. The in vitro degradation tests of scaffolds showed porous and fractured struts after 2 and 4 weeks of immersion in DMEM respectively, although a negligible weight loss is observed. Greater extent of degradation is observed in PLA with magnetic fillers followed by PLA with conductive fillers and neat PLA. In vitro bioactivity study of scaffolds indicate enhancement from ~2.9% (PLA) to ~5.32% (PLA/CNF) and ~ 3.12% (PLA/Fe2O3). Stiffness calculated from the compression tests showed decrease from ~680 MPa (PLA) to 533 MPa and 425 MPa for PLA/CNF and PLA/Fe2O3 respectively. Enhanced bioactivity and faster biodegradation response of PLA nanocomposites with conductive fillers make them a potential candidate for tissue engineering applications such as scaffold bone replacement and regeneration.  相似文献   
4.
A modified shear lag analysis, taking into account the notion of stress perturbation function, is employed to evaluate the effect of transverse cracks on the stiffness reduction in [±θn/90m]S angle-ply laminated composites. Effects of number of 90° layers and number of ±θ layers on the laminate stiffness have also been studied. The present results represent well the dependence of the degradation of mechanical properties on the fibre orientation angle of the outer layers, the number of cracked cross-ply layers and the number of uncracked outer ±θ layers in the laminate.  相似文献   
5.
The phase-field microelasticity (PFM) is adapted into a homogenization process to predict all the effective elastic constants of three-dimensional heterogeneous materials with complex microstructures. Comparison between the PFM approach and the Hashin-Shtrikman variational approach is also given. Using 3D images of two-phase heterogeneous media with regular and irregular microstructures, results indicate that the PFM approach can accurately take into account the effects of both elastic anisotropy and inhomogeneity of materials with arbitrary microstructure geometry, such as complex porous media with suspended inclusions.  相似文献   
6.

The pressure dependence of the transverse acoustic TA[0 0 1] and TA[1 0 0] phonons and the low-frequency optical v 3 phonons of AgGaSe 2 has been measured at pressures up to 4.3 GPa by inelastic neutron scattering. The strong frequency decreases in the whole Brillouin zone of the TA modes show generally a weak nonlinearity. Depending on the wavevector, the softening prior to the phase transition at 2.6 GPa also affects the optical mode to a less extent.  相似文献   
7.
In this paper, the p-version hybrid/mixed finite element formulation using the Hu–Washizu principle is presented. The shape functions are assumed to be hierarchical for the displacement variables. The stresses and the strains are interpolated using Legendre polynomials so that the computation of the stiffness matrix will be simplified. For 2-D problems, the higher-order hierarchical shape functions start following the 8-node, quadrilateral shape functions. The geometry mapping of each element is also performed using an 8-node parametric mapping. Numerical examples for a plate with a circular hole and circular inclusion are included.  相似文献   
8.
The elastic modulus, internal friction and stiffness values of quenched SnSb bearing alloy have been evaluated using the dynamic resonance technique. Annealing for 2 and 4 h at 120, 140 and 160 °C caused variations in the elastic modulus, internal friction and stiffness values. This is due to structural changes in the SnSb matrix during isothermal annealing such as coarsening in the phases (Sn, Sb or intermetallic compounds), recrystallization and stress relief. In addition, adding a small amount (1 wt.%) of Cu or Ag improved the bearing mechanical properties of the SnSb bearing alloy. The SnSbCu1 alloy has the best bearing mechanical properties with thermo-mechanical stability for long time at high temperature.  相似文献   
9.
During numerical time integration, the accuracy of the numerical solution obtained with a given step size often proves unsatisfactory. In this case one usually reduces the step size and repeats the computation, while the results obtained for the coarser grid are not used. However, we can also combine the two solutions and obtain a better result. This idea is based on the Richardson extrapolation, a general technique for increasing the order of an approximation method. This technique also allows us to estimate the absolute error of the underlying method. In this paper we apply Richardson extrapolation to the sequential splitting, and investigate the performance of the resulting scheme on several test examples.  相似文献   
10.
Numerical procedure based on plane wave expansion and stiffness matrix method is developed to calculate the transmission factor of a micro two-dimensional phononic plate. Calculations of the dispersion curve have been achieved by introducing particular functions which transform motion equations into an eigenvalue problem. The state vector has been generalized to a phononic material, it leads to a comparatively convenient matrix formulation. The influence of the layer number on the transmission factor is studied. In addition, our interest is focused on the observed gap and how it behaves when phononic structure undergoes a slight change. The result shows that if the central phononic layer is replaced by one or two homogeneous layers, guided modes originate inside the frequency band gaps.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号