首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
化学   4篇
  2023年   4篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
Mechanochemical approaches are widely used for the efficient, solvent-free synthesis of organic molecules, however their applicability to the synthesis of functional polymers has remained underexplored. Herein, we demonstrate for the first time that mechanochemically triggered free-radical polymerization allows solvent- and initiator-free syntheses of structurally and morphologically well-defined complex functional macromolecular architectures, namely stimuliresponsive microgels. The developed mechanochemical polymerization approach is applicable to a variety of monomers and allows synthesizing microgels with tunable chemical structure, variable size, controlled number of crosslinks and reactive functional end-groups.  相似文献   
2.
Multi-module design of framework materials with multiple distinct building blocks has attracted much attention because such materials are more amenable to compositional and geometrical tuning and thus offer more opportunities for property optimization. Few examples are known that use environmentally friendly and cost-effective solvent-free method to synthesize such materials. Here, we report the use of solvent-free method (also modulator-free) to synthesize a series of multi-module MOFs with high stability and separation property for C2H2/CO2. The synthesis only requires simple mixing of reactants and short reaction time (2 h). Highly porous and stable materials can be made without any post-synthetic activation. The success of solvent-free synthesis of multi-module MOFs reflects the synergy between different modules, resulting in stable pore-partitioned materials, despite the fact that other competitive crystallization pathways with simpler framework compositions also exist.  相似文献   
3.
Depolymerization of condensation polymers by chemolysis often suffers from the large usage of solvents and homogeneous catalysts such as acids, bases, and metal salts. The catalytic efficiency of heterogeneous catalysts is largely constrained by the poor interfacial contact between solid catalysts and solid plastics below melting points. We report here our discovery of autogenous heterogeneous catalyst layer on polyethylene terephthalate surfaces during the generally believed homogeneous catalytic depolymerization process. Inspired by the “contact mass” concept in industrial chlorosilane production, we further demonstrate that the construction of plastic-catalyst solid-solid interfaces enables solvent-free depolymerization of polyethylene terephthalate by vapor phase methanolysis at relatively low temperatures. Trace amounts of earth-abundant element (zinc) introduced by electrostatic adsorption is sufficient for catalyzing the depolymerization. The concept of plastic-catalyst contact mass interfacial catalysis might inspire new pathways for tackling plastic waste problems.  相似文献   
4.
The high demand for light-emitting and display devices made luminescent organic materials as attractive candidates. Solvent-free organic liquids are one of the promising emitters among them due to the salient features. However, the inherent limitations of forming sticky and noncurable surfaces must be addressed to become an alternate emitter for large-area device applications. Herein, we functionalized solvent-free organic liquids having monomeric emission in bulk with polymerizable groups to improve the processability. The polymerizable group on carbazole, naphthalene monoimide, and diketopyrrolopyrrole-based solvent-free liquid emitters enabled on-surface polymerization. These emitters alone and in combinations can be directly coated on a glass substrate without the help of solvents. Subsequent photo or thermal polymerization leads to stable, non-sticky, flexible, foldable, and free-standing large-area films with reasonably high quantum yield. Our demonstration of the tunable and white light-emitting films using polymerizable solvent-free liquids might be a potential candidate in flexible/foldable/stretchable electronics. The new concept of polymerizable liquid can be extended to other functional features suitable for futuristic applications.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号