首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
化学   2篇
  1995年   1篇
  1994年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
The configurational and solvency properties of low molecular weight sodium polyacrylate have been determined for a wide range of ionic strength solutions, from intrinsic viscosity data in the polymer literature.The variations of the polymer properties with ionic strength (I) are described very well by simple mathematical expressions. Thus, a linear relationship was found between the solvency parameter and 1/I (1/2), while the variations of the expansion factor and the radius of gyration with 1/I (1/2) were described by second order polynomials.LowI solutions (i.e. < 0.01) have a high solvency for sodium polyacrylate. In such solutions the polymer is in a highly expanded configuration. Thus, the radius of gyration of a typical, low molecular weight (ca. 5000 g mol–1) sodium polyacrylate approaches the limiting value of ca. 4.5 nm atI<0.01.Conversely, high ionic strength solutions (i.e. >0.10) have a low solvency for sodium polyacrylate. In such solutions the polymer is in a virtually unexpanded configuration. Thus, the radius of gyration of a typical, low molecular weight sodium polyacrylate approaches the limiting value of ca. 2.0 nm atI>0.10.  相似文献   
2.
The stabilising action of sodium polyacrylate on colloidal dispersions of calcite has been investigated through measurement of viscosity, ion concentration and electrophoretic mobility. The dose of sodium polyacrylate was in the range 0 to 28 mg per g of calcite and the dispersions were prepared at a sodids content of 70% (by weight). The ionic strength of the dispersions, ca. 0.005 to 0.5, increased with dose. An increase in divalent ion concentration with dose was attributed to sodium polyacrylate-ion exchange.The stabilising action of sodium polyacrylate was evident from the sharp fall in viscosity observed at low levels of addition, and the invariance of this low viscosity throughout the remainder of the dose range. The stability of the dispersions at low doses was quantified by DLVO theory and attributed to electric double layer (EDL) repulsion. However, at higher doses, and with the resultant EDL compression, DLVO theory was found inadequate. Instead, recourse was made to steric stabilisation theories in order to explain the observed stability. A model was formulated to characterise the observed multilayer uptake of polyacrylate at higher doses. The steric repulsion evaluated using this model increased with dose and explained the observed higher dose stability. The stability over the dose ranges <2, 2 to 6, and >6 mg per g is best described as arising from, respectively, electrostatic, electrosteric and steric repulsions.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号