首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7355篇
  免费   976篇
  国内免费   1325篇
化学   8578篇
晶体学   158篇
力学   73篇
综合类   49篇
数学   9篇
物理学   789篇
  2024年   6篇
  2023年   97篇
  2022年   138篇
  2021年   216篇
  2020年   356篇
  2019年   254篇
  2018年   228篇
  2017年   225篇
  2016年   388篇
  2015年   376篇
  2014年   446篇
  2013年   690篇
  2012年   622篇
  2011年   441篇
  2010年   372篇
  2009年   401篇
  2008年   435篇
  2007年   463篇
  2006年   444篇
  2005年   464篇
  2004年   436篇
  2003年   334篇
  2002年   226篇
  2001年   195篇
  2000年   187篇
  1999年   157篇
  1998年   123篇
  1997年   143篇
  1996年   135篇
  1995年   124篇
  1994年   103篇
  1993年   75篇
  1992年   95篇
  1991年   57篇
  1990年   51篇
  1989年   46篇
  1988年   25篇
  1987年   11篇
  1986年   16篇
  1985年   12篇
  1984年   4篇
  1983年   6篇
  1982年   6篇
  1981年   5篇
  1980年   4篇
  1979年   2篇
  1977年   3篇
  1974年   3篇
  1973年   5篇
  1972年   3篇
排序方式: 共有9656条查询结果,搜索用时 31 毫秒
1.
量子自旋液体是最近几年刚被人们证实除铁磁体、反铁磁体之外的第三种磁性类型,因其有望解释高温超导的运行机制、改变计算机硬盘信息存储方式而在物理、材料等领域备受关注。自旋阻挫作为量子自旋液体的最小单元可能是解开量子自旋液体诸多问题的钥匙,所以在磁学、电学研究领域再一次成为人们研究的热点。基于文献报道的三核铜配合物[Cu3(μ3-OH)(μ-OPz)3(NO3)2(H2O)2]·CH3OH(1),我们合成了三维金属有机框架配合物{[Ag(HOPz)Cu3(μ3-OH)(NO3)3(OPz)2Ag(NO3)]·6H2O}n(2)(HOPz=甲基(2-吡嗪基)酮肟),并从自旋阻挫的角度对二者磁性质进行对比和详细分析。磁化率数据表明自旋间有很强的反铁磁相互作用和反对称交换。通过包含各向同性和反对称交换的哈密顿算符对两者磁学数据进行拟合并研究其磁构关系,所获最佳拟合参数为:配合物1:Jav=-426 cm^-1,g⊥=1.83,g∥=2.00;配合物2:Jav=-401 cm^-1,g⊥=1.85,g∥=2.00。  相似文献   
2.
In this research article, we describe the synthesis and characterization of mononuclear and dinuclear Cu complexes bound by a family of tridentate redox-active ligands with tunable H-bonding donors. The mononuclear Cu-anion complexes were oxidized to the corresponding “high-valent” intermediates by oxidation of the redox-active ligand. These species were capable of oxidizing phenols with weak O−H bonds via H-atom abstraction. Thermodynamic analysis of the H-atom abstractions, which included reduction potential measurements, pKa determination and kinetic studies, revealed that modification of the anion coordinated to the Cu and changes in the H-bonding donor did not lead to major differences in the reactivity of the “high-valent” CuY complexes (Y: hydroxide, phenolate and acetate), which indicated that the tridentate ligand scaffold acts as the H+ and e acceptor.  相似文献   
3.
In the last decade, catalytic chemical vapor deposition (CVD) has been intensively explored for the growth of single-layer graphene (SLG). Despite the scattering of guidelines and procedures, variables such as the surface texture/chemistry of catalyst metal foils, carbon feedstock, and growth process parameters have been well-scrutinized. Still, questions remain on how best to standardize the growth procedure. The possible correlation of procedures between different CVD setups is an example. Here, two thermal CVD reactors were explored to grow graphene on Cu foil. The design of these setups was entirely distinct, one being a “showerhead” cold-wall type, whereas the other represented the popular “tubular” hot-wall type. Upon standardizing the Cu foil surface, it was possible to develop a procedure for cm2-scale SLG growth that differed only by the carrier gas flow rate used in the two reactors.  相似文献   
4.
The first examples of the catalytic asymmetric 1,3‐dipolar cycloaddition of azomethine ylides with acyclic activated 1,3‐dienes (and 1,3‐enynes) are described. Under copper catalysis, a selective cycloaddition at the terminal γ,δ‐C?C bond is observed. In addition, depending on the ligand used, either the exo or the endo adduct can be obtained with high selectivity. Under appropriate reaction conditions, the acyclic 1,6‐addition product is detected, suggesting a stepwise mechanism. The resulting C4‐alkenyl‐substituted pyrrolidines are suitable substrates for further access to polycyclic systems, as highlighted by the preparation of hexahydrochromeno[4,3‐b]pyrrole and the tetracyclic core of the alkaloid gracilamine.  相似文献   
5.
Phase Relations and Sodium Ion Conductivity within the Quasi-binary System Na2SiF6/Na2AIF6 . The phase diagram of the Na2SiF6/Na3AlF6 system has been determined by means of x-ray powder diffraction, thermal analysis and conductivity measurements in the sub-solidus region. Na3AlF6 accomodates up to 73 mol.-% Na2SiF6 maintaining the crystal structure type. The sodium ion conductivity increases by about five orders of magnitude upon doping Na3AlF6 with Na2SiF6.  相似文献   
6.
Silica@copper (SiO2@Cu) core–shell nanoparticles were synthesized and well characterized by XRD, TEM, AFM, XPS, UV/Vis, TGA–MS, and ICP–AES techniques. The synthesized SiO2@Cu core–shell nanoparticles were employed as catalysts for the conjugate addition of amines to α,β‐unsaturated compounds in water to obtain β‐amino carbonyl compounds in excellent yields in shorter reaction times. Furthermore, the catalyst works well for hetero‐Michael addition reactions of heteroatom nucleophiles such as thiols to α,β‐unsaturated compounds. As the reaction is performed in water, it allows for easy recycling of the catalyst with consistent activity.  相似文献   
7.
8.
报道了新合成的二氰基二硫纶·菲咯啉-5,6-二酮合铜(Ⅱ)配合物CuLL′(L=mnt2-, 1,2-dicyano-1,2-ethylenedithiolate; L′=phen-5,6-dione, 1,10-phenanthroline-5,6-dione)的变温磁化率和电子顺磁共振波谱表征结果. 发现微晶粉体型的标题配合物CuLL′具有一定的顺磁性,形成四配位的近似于方形的结构. 探讨了这种配合物磁学特性与结构的关系.  相似文献   
9.
The electronic structure and chemical bonding in a recently synthesized inorganic fullerene-like molecule, [CuCl]20[Cp*FeP5]12[Cu-(CH3CN) + 2Cl]5 has been studied by a density functional approach. Geometrical optimization of the three basic structural units of the molecule is performed with Amsterdam Density Functional Program. The results are in agreement with the experiment. Localized MO’s obtained by Boys-Foster method give a clear picture of the chemical bonding in this molecule. The reason why CuCl can react with Cp*FeP5 in solvent CH3CN to form the fullerene-like molecule is explained in terms of the soft-hard Lewis acid base theory and a new concept of covalence.  相似文献   
10.
The titled inorganic fullerene-like molecule (hereafter abbreviated as IFM) was recently synthe-sized by Bai et al.[1], which attracts a lot of interests from inorganic and organometallic chemists, and questions are raised for this smart molecule: (ⅰ) Why CuCl can react with Cp*FeP5 in solvent CH3CN to form IFM? (ⅱ) What is the nature of chemical bond-ing? (ⅲ) What is the covalence of Cu in this mole-cule? In this paper we intend to answer these questions in terms of the soft-hard …  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号