首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44篇
  免费   0篇
化学   41篇
物理学   3篇
  2019年   14篇
  2018年   2篇
  2017年   5篇
  2016年   1篇
  2015年   3篇
  2014年   1篇
  2013年   1篇
  2012年   4篇
  2011年   2篇
  2005年   2篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  1997年   2篇
  1996年   2篇
排序方式: 共有44条查询结果,搜索用时 15 毫秒
1.
2.
3.
4.
Mechanical anisotropy is ubiquitous in biological tissues but is hard to reproduce in synthetic biomaterials. Developing molecular building blocks with anisotropic mechanical response is the key towards engineering anisotropic biomaterials. The three‐way‐junction (3WJ) pRNA, derived from ϕ 29 DNA packaging motor, shows strong mechanical anisotropy upon Mg2+ binding. In the absence of Mg2+, 3WJ‐pRNA is mechanically weak without noticeable mechanical anisotropy. In the presence of Mg2+, the unfolding forces can differ by more than 4‐fold along different pulling directions, ranging from about 47 pN to about 219 pN. Mechanical anisotropy of 3WJ‐pRNA stems from pulling direction dependent cooperativity for the rupture of two Mg2+ binding sites, which is a novel mechanism for the mechanical anisotropy of biomacromolecules. It is anticipated that 3WJ‐pRNA can be used as a key element for the construction of biomaterials with controllable mechanical anisotropy.  相似文献   
5.
6.
7.
Despite the tremendous efforts devoted to the structural analysis of hydrogel microspheres (microgels), many details of their structures remain unclear. Reported in this study is that thermoresponsive poly(N‐isopropyl acrylamide) (pNIPAm)‐based microgels exhibit not only the widely accepted core–shell structures, but also inhomogeneous decanano‐sized non‐thermoresponsive spherical domains within their dense cores, which was revealed by temperature‐controlled high‐speed atomic force microscopy (TC‐HS‐AFM). Based on a series of experiments, it is concluded that the non‐thermoresponsive domains are characteristic for pNIPAm microgels synthesized by precipitation polymerization, and plausible structures for microgels prepared by other polymerization techniques are proposed.  相似文献   
8.
The ability to use mechanical strain to steer chemical reactions creates completely new opportunities for solution‐ and solid‐phase synthesis of functional molecules and materials. However, this strategy is not readily applied in the bottom‐up on‐surface synthesis of well‐defined nanostructures. We report an internal strain‐induced skeletal rearrangement of one‐dimensional (1D) metal–organic chains (MOCs) via a concurrent atom shift and bond cleavage on Cu(111) at room temperature. The process involves Cu‐catalyzed debromination of organic monomers to generate 1,5‐dimethylnaphthalene diradicals that coordinate to Cu adatoms, forming MOCs with both homochiral and heterochiral naphthalene backbone arrangements. Bond‐resolved non‐contact atomic force microscopy imaging combined with density functional theory calculations showed that the relief of substrate‐induced internal strain drives the skeletal rearrangement of MOCs via 1,3‐H shifts and shift of Cu adatoms that enable migration of the monomer backbone toward an energetically favorable registry with the Cu(111) substrate. Our findings on this strain‐induced structural rearrangement in 1D systems will enrich the toolbox for on‐surface synthesis of novel functional materials and quantum nanostructures.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号