首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
化学   12篇
  2020年   1篇
  2019年   6篇
  2018年   1篇
  2017年   2篇
  2015年   1篇
  1972年   1篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
Ohne Zusammenfassung
Automation in and with analytical chemistryV. Classification of working ranges in analytical chemistry with regard to computers

Teil IV: diese Z. 256, 7 (1971)  相似文献   
2.
Efficient, earth‐abundant, and acid‐stable catalysts for the oxygen evolution reaction (OER) are missing pieces for the production of hydrogen via water electrolysis. Here, we report how the limitations on the stability of 3d‐metal materials can be overcome by the spectroscopic identification of stable potential windows in which the OER can be catalyzed efficiently while simultaneously suppressing deactivation pathways. We demonstrate the benefits of this approach using gamma manganese oxide (γ‐MnO2), which shows no signs of deactivation even after 8000 h of electrolysis at a pH of 2. This stability is vastly superior to existing acid‐stable 3d‐metal OER catalysts, but cannot be realized if there is a deviation as small as 50‐mV from the stable potential window. A stable voltage efficiency of over 70 % in a polymer–electrolyte membrane (PEM) electrolyzer further verifies the availability of this approach and showcases how materials previously perceived to be unstable may have potential application for water electrolysis in an acidic environment.  相似文献   
3.
Hydrogen production from water via electrolysis in acid is attracting extensive attention as an attractive alternative approach to replacing fossil fuels. However, the simultaneous evolution of H2 and O2 requires a fluorine‐containing proton exchange membrane to prevent the gases from mixing while using the same space to concentrate the gases, which significantly increases the cost and reduces the flexibility of this approach. Here, a battery electrode based on the highly reversible enolization reaction of pyrene‐4,5,9,10‐tetraone is first introduced as a solid‐state proton buffer to separate the O2 and H2 evolution of acidic water electrolysis in space and time, through which the gas mixing issue can be avoided without using any membrane. This process allows us to separately consider H2 and O2 production according to the variation in input power (e.g., the renewable energy) and/or the location for H2 concentration, thus showing high flexibility for H2 production.  相似文献   
4.
High-energy-density Li metal batteries suffer from a short lifespan under practical conditions, such as limited lithium, high loading cathode, and lean electrolytes, owing to the absence of appropriate solid electrolyte interphase (SEI). Herein, a sustainable SEI was designed rationally by combining fluorinated co-solvents with sustained-release additives for practical challenges. The intrinsic uniformity of SEI and the constant supplements of building blocks of SEI jointly afford to sustainable SEI. Specific spatial distributions and abundant heterogeneous grain boundaries of LiF, LiNxOy, and Li2O effectively regulate uniformity of Li deposition. In a Li metal battery with an ultrathin Li anode (33 μm), a high-loading LiNi0.5Co0.2Mn0.3O2 cathode (4.4 mAh cm−2), and lean electrolytes (6.1 g Ah−1), 83 % of initial capacity retains after 150 cycles. A pouch cell (3.5 Ah) demonstrated a specific energy of 340 Wh kg−1 for 60 cycles with lean electrolytes (2.3 g Ah−1).  相似文献   
5.
We report a highly active and durable water oxidation electrocatalyst based on cubic nanocages with a composition of Ir44Pd10, together with well‐defined {100} facets and porous walls of roughly 1.1 nm in thickness. Such nanocages substantially outperform all the water oxidation electrocatalysts reported in literature, with an overpotential of only 226 mV for reaching 10 mA cm?2geo at a loading of Ir as low as 12.5 μgIr cm?2 on the electrode in acidic media. When benchmarked against a commercial Ir/C electrocatalyst at 250 mV of overpotential, such a nanocage‐based catalyst not only shows enhancements (18.1‐ and 26.2‐fold, respectively) in terms of mass (1.99 A mg?1Ir) and specific (3.93 mA cm?2Ir) activities, but also greatly enhanced durability. The enhancements can be attributed to a combination of multiple merits, including a high utilization efficiency of Ir atoms and an open structure beneficial to the electrochemical oxidation of Ir to the active form of IrOx.  相似文献   
6.
7.
Graphite as an anode for the potassium ion battery (PIBs) has the merits of low cost and potentially high energy density, while suffering from limited cycle time and inferior stability. Herein we, using a concentrated electrolyte, demonstrate that formation of a robust inorganic‐rich passivation layer on the graphite anode could resolve these problems. Consequently, the PIBs with graphite anode could operate for over 2000 cycles (running time of over 17 months) with negligible capacity decay, and had a high area capacity over 7.36 mAh cm?2 with a high mass loading of 28.56 mg cm?2. These unprecedented performances of graphite are comparable to that of traditional lithium‐ion batteries, and may promote the rapidly development of high performance PIBs.  相似文献   
8.
Flexible and scalable energy storage solutions are necessary for mitigating fluctuations of renewable energy sources. The main advantage of redox flow batteries is their ability to decouple power and energy. However, they present some limitations including poor performance, short‐lifetimes, and expensive ion‐selective membranes as well as high price, toxicity, and scarcity of vanadium compounds. We report a membrane‐free battery that relies on the immiscibility of redox electrolytes and where vanadium is replaced by organic molecules. We show that the biphasic system formed by one acidic solution and one ionic liquid, both containing quinoyl species, behaves as a reversible battery without any membrane. This proof‐of‐concept of a membrane‐free battery has an open circuit voltage of 1.4 V with a high theoretical energy density of 22.5 Wh L−1, and is able to deliver 90 % of its theoretical capacity while showing excellent long‐term performance (coulombic efficiency of 100 % and energy efficiency of 70 %).  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号