首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   1篇
化学   32篇
数学   2篇
物理学   1篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2019年   5篇
  2017年   2篇
  2016年   2篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2011年   4篇
  2010年   2篇
  2009年   2篇
  2008年   1篇
  2007年   3篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
排序方式: 共有35条查询结果,搜索用时 46 毫秒
1.
Multidrug resistance protein-4 (MRP4) belongs to the ABC transporter superfamily and promotes the transport of xenobiotics including drugs. A non-synonymous single nucleotide polymorphisms (nsSNPs) in the ABCC4 gene can promote changes in the structure and function of MRP4. In this work, the interaction of certain endogen substrates, drug substrates, and inhibitors with wild type-MRP4 (WT-MRP4) and its variants G187W and Y556C were studied to determine differences in the intermolecular interactions and affinity related to SNPs using protein threading modeling, molecular docking, all-atom, coarse grained, and umbrella sampling molecular dynamics simulations (AA-MDS and CG-MDS, respectively). The results showed that the three MRP4 structures had significantly different conformations at given sites, leading to differences in the docking scores (DS) and binding sites of three different groups of molecules. Folic acid (FA) had the highest variation in DS on G187W concerning WT-MRP4. WT-MRP4, G187W, Y556C, and FA had different conformations through 25 ns AA-MD. Umbrella sampling simulations indicated that the Y556C-FA complex was the most stable one with or without ATP. In Y556C, the cyclic adenosine monophosphate (cAMP) and ceefourin-1 binding sites are located out of the entrance of the inner cavity, which suggests that both cAMP and ceefourin-1 may not be transported. The binding site for cAMP and ceefourin-1 is quite similar and the affinity (binding energy) of ceefourin-1 to WT-MRP4, G187W, and Y556C is greater than the affinity of cAMP, which may suggest that ceefourin-1 works as a competitive inhibitor. In conclusion, the nsSNPs G187W and Y556C lead to changes in protein conformation, which modifies the ligand binding site, DS, and binding energy.  相似文献   
2.
《Electroanalysis》2004,16(23):1999-2002
We have demonstrated an electrochemical gene chip protocol for the SNPs detection of nonlabeled DNA. Using an array consisting of streptavidin‐modified gold electrodes, probe DNA were attached through the application of a direct electric field. Electrochemical response changes originating from the hybridization of nucleic acids to protein‐bound nucleic acids using soluble mediators in K3Fe(CN)6 solution could then be observed. The electrochemical protocol developed showed high sensitivity and good reproducibility in the detection of DNA hybridization. Significant changes in electrochemical signals were also observed when using target DNA with a single base mismatch, indicating the applicability of this method to single nucleotide polymorphisms (SNPs) detection.  相似文献   
3.
SNPs, combined with massively parallel sequencing technology, have proven applicability in noninvasive prenatal paternity testing (NIPPT) for singleton pregnancies in our previous research, using circulating cell-free DNA in maternal plasma. However, the feasibility of NIPPT in twin pregnancies has remained uncertain. As a pilot study, we developed a practical method to noninvasively determine the paternity of twin pregnancies by maternal plasma DNA sequencing based on a massively parallel sequencing platform. Blood samples were collected from 15 pregnant women (twin pregnancies at 9–18 weeks of gestation). Parental DNA and maternal plasma cell-free DNA were analyzed with custom-designed probes covering 5226 polymorphic SNP loci. A mathematical model for data interpretation was established, including the zygosity determination and paternity index calculations. Each plasma sample was independently tested against the alleged father and 90 unrelated males. As a result, the zygosity in each twin case was correctly determined, prior to paternity analysis. Further, the correct biological father was successfully identified, and the paternity of all 90 unrelated males was excluded in each case. Our study demonstrates that NIPPT can be performed for twin pregnancies. This finding may contribute to development in NIPPT and diagnosis of certain genetic diseases.  相似文献   
4.
Conventional methods for detecting single-nucleotide polymorphisms (SNPs), the most common form of genetic variation in human beings, are mostly limited by their analysis time and throughputs. In contrast, advances in microfabrication technology have led to the development of miniaturized platforms that can potentially provide rapid high-throughput analysis at small sample volumes. This review highlights some of the recent developments in the miniaturization of SNP detection platforms, including microarray-based, bead-based microfluidic and microelectrophoresis-based platforms. Particular attention is paid to their ease of fabrication, analysis time, and level of throughput.  相似文献   
5.
HPPD gene codes a dioxygenase enzyme involved in catalysis of different molecules such as tyrosine and phenylalanine by oxidizing them to produce energy. A single change in protein can trigger serious genetic disorders like Tyrosinemia type III and Hawkinsinuria. This study aims to identify the functional missense SNPs of the HPPD gene by using multiple computational tools. All deleterious missense SNPs retrieved from Ensembl and OMIM database were evaluated through six different software. Ultimately, out of 148 missense SNPs, only 27 were confirmed as diseasecausing SNPs by developing a consensus approach. These damaging SNPs were further examined to evaluate their impact on protein stability and energy including their evolutionary conservation. Native and mutated proteins structures were also designed and superimposed by I-TASSER and PyMol respectively. This work results in narrowing down missense SNPs which are still not confirmed experimentally and demands the confirmation by GWAS data. Thus, these missense SNPs could directly or indirectly destabilize the amino acid interactions causing functional deviations of protein.  相似文献   
6.
SNPs are one of the main sources of DNA variation among humans. Their unique properties make them useful polymorphic markers for a wide range of fields, such as medicine, forensics, and population genetics. Although several high-throughput techniques have been (and are being) developed for the vast typing of SNPs in the medical context, population genetic studies involve the typing of few and select SNPs for targeted research. This results in SNPs having to be typed in multiple reactions, consuming large amounts of time and of DNA. In order to improve the current situation in the area of human Y-chromosome diversity studies, we decided to employ a system based on a multiplex oligo ligation assay/PCR (OLA/PCR) followed by CE to create a Y multiplex capable of distinguishing, in a single reaction, all the major haplogroups and as many subhaplogroups on the Y-chromosome phylogeny as possible. Our efforts resulted in the creation of a robust and accurate 35plex (35 SNPs in a single reaction) that when tested on 165 human DNA samples from different geographic areas, proved capable of assigning samples to their corresponding haplogroup.  相似文献   
7.
Ng JK  Feng H  Liu WT 《Analytica chimica acta》2007,582(2):295-303
A microfluidic device incorporating monolayered beads is developed for the discrimination of single-nucleotide mismatches, based on the differential dissociation kinetics between perfect match (PM) and mismatched (MM) duplexes. The monolayered beads are used as solid support for the immobilization of oligonucleotide probes containing a single-base variation. Target oligonucleotides hybridize to the probes, forming either PM duplexes or MM duplexes containing a single mismatch. Optimization studies show that PM and MM duplexes are easily discriminated based on their dissociation but not hybridization kinetics under an optimized buffer composition of 100 mM NaCl and 50% formamide. Detection of single-nucleotide polymorphism (SNP) using the device is demonstrated within 8 min using four probes containing all the possible single-base variants. The device can easily be modified to integrate multiplexed detection, making high-throughput SNP detection possible.  相似文献   
8.
In recent years an increasing amount of interest has been directed at the study and routine testing of polymorphisms responsible for variations in drug metabolism. Most of the current methods involve either time-consuming electrophoresis steps or specialized and expensive equipment. In this context, we have developed a rapid, simple and robust method for genotyping of CYP2D6*3, CYP2D6*4, CYP2C19*2, CYP2C19*3 and TPMT*2 single nucleotide polymorphisms (SNP). Genomic DNA is isolated from whole blood and the segments that span the SNP of interest are amplified by PCR. The products are subjected directly (without purification) to two primer extension (PEXT) reactions (three cycles each) using normal and mutant primers in the presence of biotin-dUTP. The PEXT primers contain a (dA)30 segment at the 5′ end. The PEXT products are detected visually by a dry-reagent dipstick-type assay in which the biotinylated extension products are captured from immobilized streptavidin on the test zone of the strip and detected by hybridization with oligo(dT)-functionalized gold nanoparticles. Patient samples (76 variants in total) were genotyped and the results were fully concordant with those obtained by direct DNA sequencing.  相似文献   
9.
Massively parallel sequencing (MPS) technology allows to simultaneously type multitudinous molecular genetic markers for many samples in one run with the feature of high detection resolution, and thereby arouses the increasing attention from forensic science. Herein, multiple allelic single nucleotide polymorphisms (multi-allelic SNPs) were screened for personal identification and parentage testing, and then were genotyped using MPS platform. Unrelated individuals of Chinese Mongolian and Kazakh groups were investigated to further estimate forensic effectiveness and applicability of these multi-allelic SNPs. The results of sequencing efficiency estimations and forensic genetic statistical parameters demonstrated that this MPS panel of multi-allelic SNPs was expected to be work for forensic applications. Subsequently, the exploration of population genetic variation patterns among the two investigated groups and other 26 reference populations revealed that these Chinese Mongolian and Kazakh groups had the similar population genetic patterns with the populations from East Asian, but European ancestral composition in the Kazakh group was higher than that in the Mongolian group. Currently, the present results were the preliminary research to scrutinize genetic information of these two ethnic minority groups employing multi-allelic SNPs.  相似文献   
10.
Detecting epistatic interactions, or nonlinear interactive effects of Single Nucleotide Polymorphisms (SNPs), has gained increasing attention in explaining the “missing heritability” of complex diseases. Though much work has been done in mapping SNPs underlying diseases, most of them constrain to 2-order epistatic interactions. In this paper, a method of hypergraph construction and high-density subgraph detection, named HC-HDSD, is proposed for detecting high-order epistatic interactions. The hypergraph is constructed by low-order epistatic interactions that identified using the normalized co-information measure and the exhaustive search. The hypergraph consists of two types of vertices: real ones representing main effects of SNPs and virtual ones denoting interactive effects of epistatic interactions. Then, both maximal clique centrality algorithm and near-clique mining algorithm are employed to detect high-density subgraphs from the constructed hypergraph. These high-density subgraphs are inferred as high-order epistatic interactions in the HC-HDSD. Experiments are performed on several simulation data sets, results of which show that HC-HDSD is promising in inferring high-order epistatic interactions while substantially reducing the computation cost. In addition, the application of HC-HDSD on a real Age-related Macular Degeneration (AMD) data set provides several new clues for the exploration of causative factors of AMD.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号