首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
化学   7篇
物理学   1篇
  2019年   4篇
  2017年   1篇
  2013年   1篇
  2009年   1篇
  2008年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
2.
The design and synthesis of highly efficient deep red (DR) and near‐infrared (NIR) organic emitting materials with characteristic of thermally activated delayed fluorescence (TADF) still remains a great challenge. A strategy was developed to construct TADF organic solid films with strong DR or NIR emission feature. The triphenylamine (TPA) and quinoxaline‐6,7‐dicarbonitrile (QCN) were employed as electron donor (D) and acceptor (A), respectively, to synthesize a TADF compound, TPA‐QCN. The TPA‐QCN molecule with orange‐red emission in solution was employed as a dopant to prepare DR and NIR luminescent solid thin films. The high doped concentration and neat films exhibited efficient DR and NIR emissions, respectively. The highly efficient DR and NIR organic light‐emitting devices (OLEDs) were fabricated by regulating TPA‐QCN dopant concentration in the emitting layers.  相似文献   
3.
Establishing an effective design principle in solid‐state materials for a blue‐light‐excited Eu2+‐doped red‐emitting oxide‐based phosphors remains one of the significant challenges for white light‐emitting diodes (WLEDs). Selective occupation of Eu2+ in inorganic polyhedra with small coordination numbers results in broad‐band red emission as a result of enhanced crystal‐field splitting of 5d levels. Rb3YSi2O7:Eu exhibits a broad emission band at λmax=622 nm under 450 nm excitation, and structural analysis and DFT calculations support the concept that Eu2+ ions preferably occupy RbO6 and YO6 polyhedra and show the characteristic red emission band of Eu2+. The excellent thermal quenching resistance, high color‐rendering index Ra (93), and low CCT (4013 K) of the WLEDs clearly demonstrate that site engineering of rare‐earth phosphors is an effective strategy to target tailored optical performance.  相似文献   
4.
In response to ever‐increasing application requirements in lighting and displays, a tremendous emphasis is being placed on single‐component white‐light emission. Single‐component inorganic borates doped with rare earth metal ions have shown prominent achievements in white‐light emission. The first environmentally friendly defect‐induced white‐light emitting crystalline inorganic borate, Ba2[Sn(OH)6][B(OH)4]2, has been prepared. Additionally, it is the first borate‐stannate without a Sn?O?B linkage. Notably, Ba2[Sn(OH)6][B(OH)4]2 shows Commission Internationale de l'Eclairage (CIE) chromaticity coordinates of (0.42, 0.38), an ultrahigh color rendering index (CRI) of 94.1, and an appropriate correlated color temperature (CCT) of 3083 K. Such a promising material will provide a new approach in the development of white‐light emitting applications.  相似文献   
5.
As a new direction in applied chemistry, fiber electronics allow device configuration to evolve from three to two dimensions and then to one dimension. The reduction in dimension brings unique properties, such as ultraflexibility, tissue adaptability, and weavability, enabling their use in a variety of applications, particularly in various emerging fields related to implantable devices and wearable systems. The different types of fiber electrode materials are summarized based on the one‐dimensional configuration and their distinctive interfaces, various devices, and promising applications. The remaining challenges and future directions are finally highlighted.  相似文献   
6.
Nine species of basidiomycota and one species of ascomycota were grown in an ammonium sulphate media and on beech wood; and the general 15N dynamic patterns of the hyphae were examined. The fungal body initially became depleted in 15N in both the types of incubation. However, the underlying mechanisms were quite different, that is, significant fungal 15N drop on the beech wood is associated with the fungal N reallocation and the uptake of atmospheric ammonia and/or NOx, in addition to isotope fractionation during assimilation. Although the 15N values of the wood-decomposing basidiocarps were generally close to the 15N values of the wood, it does not always indicate that the wood derived N was the sole N source for the fungi throughout the growth periods as shown in our wood-decomposing experiment.  相似文献   
7.
8.
K2TiF6:Mn4+ is a highly efficient narrow‐band emission red phosphor with promising applications in white light‐emitting diodes (LEDs) and wide‐gamut displays. Nevertheless, the poor moisture‐resistant properties of this material hinder commercialization. A convenient reverse cation‐exchange strategy is introduced for constructing a core–shell‐structured K2TiF6:Mn4+@K2TiF6 phosphor. The outer K2TiF6 shell acts as a shield for preventing moisture in the air from hydrolyzing the internal MnF62? group, while effectively cutting off the path of energy migration to surface defects, thereby increasing the emission efficiency (especially for the phosphors doped with high concentrations of Mn4+). Employed as a red phosphor, the packaged white LED exhibits an extraordinarily high luminous efficacy of 162 lm W?1, a correlated color temperature (CCT) of 3510 K, and a color rendering index of 93 (Ra). Aging tests performed on this device at 85 °C and 85 % humidity for 480 h retain up to 89 % luminous efficacy. The findings could facilitate commercial application of K2TiF6:Mn4+@K2TiF6 phosphor.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号