首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81345篇
  免费   13186篇
  国内免费   6791篇
化学   85312篇
晶体学   984篇
力学   1878篇
综合类   123篇
数学   5868篇
物理学   7157篇
  2024年   67篇
  2023年   387篇
  2022年   730篇
  2021年   1033篇
  2020年   1767篇
  2019年   3310篇
  2018年   3197篇
  2017年   3558篇
  2016年   3926篇
  2015年   6059篇
  2014年   6294篇
  2013年   8818篇
  2012年   6533篇
  2011年   6537篇
  2010年   5263篇
  2009年   5179篇
  2008年   5570篇
  2007年   5066篇
  2006年   4711篇
  2005年   4511篇
  2004年   3935篇
  2003年   3322篇
  2002年   3611篇
  2001年   1962篇
  2000年   1856篇
  1999年   996篇
  1998年   408篇
  1997年   378篇
  1996年   323篇
  1995年   311篇
  1994年   266篇
  1993年   201篇
  1992年   202篇
  1991年   144篇
  1990年   120篇
  1989年   110篇
  1988年   90篇
  1987年   56篇
  1986年   49篇
  1985年   55篇
  1984年   52篇
  1983年   26篇
  1982年   40篇
  1981年   36篇
  1980年   28篇
  1979年   27篇
  1978年   28篇
  1977年   31篇
  1976年   36篇
  1974年   38篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
The artificially accurate design of nonmetal electrocatalysts’ active site has been a huge challenge because no pure active species with the specific structure could be strictly controlled by traditional synthetic methods. Species with a multiconfiguration in the catalyst hinder identification of the active site and the subsequent comprehension of the reaction mechanism. We have developed a novel electro-assisted molecular assembly strategy to obtain a pure pentagon ring on perfect graphene avoiding other reconstructed structures. More importantly, the active atom was confirmed by the subtle passivation process as the topmost carbon atom. Recognition of the carbon-defect electrocatalysis reaction mechanism was first downsized to the single-atom scale from the experimental perspective. It is expected that this innovative electro-assisted molecular assembly strategy could be extensively applied in the active structure-controlled synthesis of nonmetal electrocatalysts and verification of the exact active atom.  相似文献   
2.
The requirement of green and sustainable materials to prepare heterogeneous catalysts has intensified for practical reasons over the past few decades. Carbohydrates are possibly the most plentiful and renewable organic materials in nature with inimitable physiochemical properties, plausible low-cost and large-scale production, and sustainability features could be exploited in the generation of nanostructured heterogeneous catalysts. This review article outlines the organic transformations catalyzed by diverse carbohydrate-based nanostructured catalysts in greener and environmentally friendly processes. Selected examples are highlighted for a variety of organic reactions exploiting the proposed catalysts’ reactivity and reusability, and interactions with the intrinsic nature of the applied carbohydrate supports; advantages and speculated challenges of the introduced catalysts are deliberated as well.  相似文献   
3.
In this study, we investigated an alternative method for the chemical CO2 reduction reaction in which power ultrasound (488 kHz ultrasonic plate transducer) was applied to CO2-saturated (up to 3%) pure water, NaCl and synthetic seawater solutions. Under ultrasonic conditions, the converted CO2 products were found to be mainly CH4, C2H4 and C2H6 including large amount of CO which was subsequently converted into CH4. We have found that introducing molecular H2 plays a crucial role in the CO2 conversion process and that increasing hydrogen concentration increased the yields of hydrocarbons. However, it was observed that at higher hydrogen concentrations, the overall conversion decreased since hydrogen, a diatomic gas, is known to decrease cavitational activity in liquids. It was also found that 1.0 M NaCl solutions saturated with 2% CO2 + 98% H2 led to maximum hydrocarbon yields (close to 5%) and increasing the salt concentrations further decreased the yield of hydrocarbons due to the combined physical and chemical effects of ultrasound. It was shown that CO2 present in a synthetic industrial flue gas (86.74% N2, 13% CO2, 0.2% O2 and 600 ppm of CO) could be converted into hydrocarbons through this method by diluting the flue gas with hydrogen. Moreover, it was observed that in addition to pure water, synthetic seawater can also be used as an ultrasonicating media for the sonochemical process where the presence of NaCl improves the yields of hydrocarbons by ca. 40%. We have also shown that by using low frequency high-power ultrasound in the absence of catalysts, it is possible to carry out the conversion process at ambient conditions i.e., at room temperature and pressure. We are postulating that each cavitation bubble formed during ultrasonication act as a “micro-reactor” where the so-called Sabatier reaction -CO2+4H2UltrasonicationCH4+2H2O - takes place upon collapse of the bubble. We are naming this novel approach as the “Islam-Pollet-Hihn process”.  相似文献   
4.
《Mendeleev Communications》2022,32(4):507-509
We report on the synthesis of new Ru(bpy)2(phen) catalyst for the oscillatory Belousov–Zhabotinsky chemical reaction and on the preparation of novel Ru(bpy)2(phen)-based self-oscillating gels. The synthesized gels exhibit high-amplitude autonomous mechanical oscillations when the Belousov–Zhabotinsky reaction proceeds inside these gels  相似文献   
5.
Understanding the thermal aggregation behavior of metal atoms is important for the synthesis of supported metal clusters. Here, derived from a metal–organic framework encapsulating a trinuclear FeIII2FeII complex (denoted as Fe3) within the channels, a well-defined nitrogen-doped carbon layer is fabricated as an ideal support for stabilizing the generated iron nanoclusters. Atomic replacement of FeII by other metal(II) ions (e.g., ZnII/CoII) via synthesizing isostructural trinuclear-complex precursors (Fe2Zn/Fe2Co), namely the “heteroatom modulator approach”, is inhibiting the aggregation of Fe atoms toward nanoclusters with formation of a stable iron dimer in an optimal metal–nitrogen moiety, clearly identified by direct transmission electron microscopy and X-ray absorption fine structure analysis. The supported iron dimer, serving as cooperative metal–metal site, acts as efficient oxygen evolution catalyst. Our findings offer an atomic insight to guide the future design of ultrasmall metal clusters bearing outstanding catalytic capabilities.  相似文献   
6.
The mechanisms of CO2 coupling with the propargylic alcohol using alkali carbonates M2CO3 (M = Li, Na, K, Cs) have been investigated by means of density functional theory calculations. The calculations reveal that the target product tetronic acid (TA) is yielded through two stages: (a) the formation of the α-alkylidene cyclic carbonate (αACC) intermediate via Cs2CO3-mediated carboxylative cyclization of the propargylic alcohol with CO2, and (b) the conversion of the αACC intermediate with Cs2CO3 to produce the cesium salt of the TA. Since the overall kinetic barriers for the two stages are comparable and affordable, the excellent chemoselectivity to the TA should be primarily originated from the high thermodynamic stability of the cesium salt of the TA. Moreover, relative to the TA, the possibility to yield the by-product acyclic carbonate can be excluded due to the both kinetics and thermodynamic inferiority. This result is different from the organic base-mediated reaction. Alternatively, our calculations predict that CsHCO3 together generated with the cesium salt of the TA might also be an available mediating reagent for the incorporation of CO2 with the propargylic alcohol. Compared to other alkali carbonates M2CO3 (M = Li, Na, K), the stronger basicity of Cs2CO3 and the lower ionic potential of cesium ion can raise the effective concentration of the αACC intermediate, and thus the conversion of the αACC intermediate into the cesium salt of the TA can be achieved with high yield.  相似文献   
7.
We studied the ring opening of propylene oxide (PO) by salen-M coordinated OH group [M = Al(III), Sc(III), Cr(III), Mn(III), Fe(III), Co(II), Co(III), Ni(II), Cu(II), Zn(II), Ru(III) and Rh(III)]. The results show that the ring-opening energy barriers for M(II) complexes are much lower than those with M(III) complexes in the gas phase, and the barriers correlate linearly with the negative charges on the OH group and the Fukui function condensed on the OH group. The nucleophilicity ordering in the gas phase can be rationalized by the ratio of formal positive charges/radius of M cations. Solvent effect greatly increases the barriers of M(II) complexes but slightly changes the results of M(III) ones, making the barriers similar. Analysis indicates that the reaction heats are linearly proportional to the reverse reaction barriers. The relationships established here can be used to estimate the ring-opening barriers and to screen epoxide ring-opening catalysts.  相似文献   
8.
Ronald Pethig 《Electrophoresis》2019,40(18-19):2575-2583
Dielectrophoresis (DEP) studies have progressed from the microscopic scale of cells and bacteria, through the mesoscale of virions to the molecular scale of DNA and proteins. The Clausius‐Mossotti function, based on macroscopic electrostatics, is invariably employed in the analyses of all these studies. The limitations of this practice are explored, with the conclusion that it should be abandoned for the DEP study of proteins and modified for native DNA. For macromolecular samples in general, a DEP theory that incorporates molecular‐scale interactions and the influence of permanent dipoles is more appropriate. Experimental ways to test these conclusions are proposed.  相似文献   
9.
Cavitation erosion is caused in solids exposed to strong pressure waves developing in an adjacent fluid field. The knowledge of the transient distribution of stresses in the solid is important to understand the cause of damaging by comparisons with breaking points of the material. The modeling of this problem requires the coupling of the models for the fluid and the solid. For this purpose, we use a strategy based on the solution of coupled Riemann problems that has been originally developed for the coupling of 2 fluids. This concept is exemplified for the coupling of a linear elastic structure with an ideal gas. The coupling procedure relies on the solution of a nonlinear equation. Existence and uniqueness of the solution is proven. The coupling conditions are validated by means of quasi‐1D problems for which an explicit solution can be determined. For a more realistic scenario, a 2D application is considered where in a compressible single fluid, a hot gas bubble at low pressure collapses in a cold gas at high pressure near an adjacent structure.  相似文献   
10.
The development of high‐surface‐area carbon electrodes with a defined pore size distribution and the incorporation of pseudo‐active materials to optimize the overall capacitance and conductivity without destroying the stability are at present important research areas. Composite electrodes of carbon nano‐onions (CNOs) and polypyrrole (Ppy) were fabricated to improve the specific capacitance of a supercapacitor. The carbon nanostructures were uniformly coated with Ppy by chemical polymerization or by electrochemical potentiostatic deposition to form homogenous composites or bilayers. The materials were characterized by transmission‐ and scanning electron microscopy, differential thermogravimetric analyses, FTIR spectroscopy, piezoelectric microgravimetry, and cyclic voltammetry. The composites show higher mechanical and electrochemical stabilities, with high specific capacitances of up to about 800 F g?1 for the CNOs/SDS/Ppy composites (chemical synthesis) and about 1300 F g?1 for the CNOs/Ppy bilayer (electrochemical deposition).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号