首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
化学   8篇
  2012年   1篇
  2011年   2篇
  2009年   2篇
  2008年   1篇
  2004年   1篇
  2002年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
Effect of electrolytes on the surface behavior of rhamnolipids R1 and R2   总被引:1,自引:0,他引:1  
The surface behavior of solutions of the rhamnolipids, R1 and R2, were investigated in the absence and presence of an electrolyte (NaCl) through surface tension measurements and optical microscopy at pH 6.8. The NaCl concentrations studied are 0.05, 0.5 and 1 M. Electrolytes directly affect the carboxylate groups of the rhamnolipids. The solution/air interface has a net negative charge due to the dissociated carboxylate ions at pH 6.8 with strong repulsive electrostatic forces between the rhamnolipid molecules. This negative charge is shielded by the Na+ ions in the electrical double layer in the presence of NaCl, causing the formation of a close-packed monolayer, and a decrease in CMC, and surface tension values. The maximum compaction is observed at 0.5 M NaCl concentrations for R1 and R2 monolayers, with the R1 monolayer more compact than R2. The larger spaces left below the hydrophobic tails of R1 with respect to that of R2, due to the missing second rhamnosyl groups are thought to be responsible for the higher compaction. The rigidity of both R1 and R2 monolayers increases with the electrolyte concentration. The rigidity of the R1 monolayer is greater than that of R2 at all NaCl concentrations due to the lower hydrophilic character of R1. The variation of CMC values as a function of NaCl concentration obtained from the surface tension measurements and critical packing parameter (CPP) calculations show that spherical micelles, bilayer and rod like micelles are formed in the rhamnolipid solutions as a function of the NaCl concentration. The results of optical microscopy supported these aggregation states indicating lamellar nematic liquid crystal, cubic lamellar and hexagonal liquid crystal phases in R1 and R2 solutions depending on the NaCl concentration.  相似文献   
2.
采用生物表面活性剂鼠李糖脂建立了无需助表面活性剂的微乳体系,并应用于微乳毛细管电动色谱快速分析化妆品中皮质类激素泼尼松、泼尼松龙和氢化可的松。考察了pH值、鼠李糖脂浓度、离子强度、油相种类和浓度、分离温度、分离电压及进样电压和时间的影响,得出微乳体系最佳组成为0.1%(w/w)鼠李糖脂+0.8%(w/w)正庚烷+99.1%(w/w)硼砂缓冲液(80 mmol/L,pH 9.2)。分离温度20℃,分离电压20kV,电动进样10 kV×3 s,泼尼松、氢化可的松和泼尼松龙在9.4 min内可基线分离。重复进样7次,迁移时间和峰面积的RSD分别小于0.2%和5.0%。3种分析物线性范围均为5~100 mg/L;检出限分别为1.0,1.1和1.3 mg/L(S/N=3)。仅需简单萃取即可用于化妆品样品测定,回收率为81.6%~108%;RSD均小于4.8%。  相似文献   
3.
Pseudomonas aeruginosa PACL strain, isolated from oil-contaminated soil taken from a lagoon, was used to investigate the efficiency and magnitude of biosurfactant production, using different waste frying soybean oils, by submerged fermentation in stirred tank reactors of 6 and 10 l capacities. A complete factorial experimental design was used, with the goal of optimizing the aeration rate (0.5, 1.0, and 1.5 vvm) and agitation speed (300, 550, and 800 rpm). Aeration was identified as the primary variable affecting the process, with a maximum rhamnose concentration occurring at an aeration rate of 0.5 vvm. At optimum levels, a maximum rhamnose concentration of 3.3 g/l, an emulsification index of 100%, and a minimum surface tension of 26.0 dynes/cm were achieved. Under these conditions, the biosurfactant production derived from using a mixture of waste frying soybean oil (WFSO) as a carbon source was compared to production when non-used soybean oil (NUSO), or waste soybean oils used to fry specific foods, were used. NUSO produced the highest level of rhamnolipids, although the waste soybean oils also resulted in biosurfactant production of 75–90% of the maximum value. Under ideal conditions, the kinetic behavior and the modeling of the rhamnose production, nutrient consumption, and cellular growth were established. The resulting model predicted data points that corresponded well to the empirical information.  相似文献   
4.
Recent advances in the environmental applications of biosurfactants   总被引:1,自引:0,他引:1  
Biosurfactants can be used for heavy metal or organic contaminant removal from contaminated soil or for bioremediation enhancement. Most research has been performed on the use of rhamnolipids. However, present and future studies involve new biosurfactants and new applications as sustainable, renewable additives for nanoparticle production and use.  相似文献   
5.
During the last few decades, increasing interest in biological surfactants led to an intensification of research for the cost-efficient production of biosurfactants compared with traditional petrochemical surface-active components. The quest for alternative production strains also is associated with new demands on biosurfactant analysis. The present paper gives an overview of existing analytical methods, based on the example of rhamnolipids. The methods reviewed range from simple colorimetric testing to sophisticated chromatographic separation coupled with detection systems like mass spectrometry, by means of which detailed structural information is obtained. High-performance liquid chromatography (HPLC) coupled with mass spectrometry currently presents the most precise method for rhamnolipid identification and quantification. Suitable approaches to accelerate rhamnolipid quantification for better control of biosurfactant production are HPLC analysis directly from culture broth by adding an internal standard or Fourier transform infrared attenuated total reflectance spectroscopy measurements of culture broth as a possible quasi-online quantification method in the future. The search for alternative rhamnolipid-producing strains makes a structure analysis and constant adaptation of the existing quantification methods necessary. Therefore, simple colorimetric tests based on whole rhamnolipid content can be useful for strain and medium screening. Furthermore, rhamnolipid purification from a fermentation broth will be considered depending on the following application.  相似文献   
6.
Glycosylation of decan‐1‐ol ( 2 ), (±)‐decan‐2‐ol ( 3 ), and (±)‐methyl 3‐hydroxydecanoate ( 4 ) with L rhamnose peracetate 5 to produce rhamnosides (=6‐deoxymannosides) 6, 7 , and 8 in the presence of Lewis acids BF3?Et2O, Sc(OTf)3, InBr3, and Bi(OTf)3 was studied (Table 1). While the strong Lewis acids BF3?Et2O and Sc(OTf)3 were effective as glycosylation promoters, they had to be used in excess; however, glycosylation required careful control of reaction times and temperatures, and these Lewis acids produced impurities in addition to the desired glycosides. Enantiomerically pure rhamnosides (R)‐ 1 and (S)‐ 1 (Fig.) were obtained from L rhamnose peracetate 5 and (±)‐benzyl 3‐hydroxydecanoate ( 9 ) via the diastereoisomeric rhamnosides 10 (Table 2; Scheme 3). The much weaker Lewis acids InBr3 and Bi(OTfl)3 produced purer products in high yield under a wider range of conditions (higher temperatures), and were effective glycosylation promoters even when used catalytically (<10% catalyst; Table 2). We refer to these Lewis acids as ‘minimally competent Lewis acids’ (cf. Scheme 4).  相似文献   
7.
Culture conditions involving variations in carbon and nitrogen sources and different C:N ratios were examined with the aim of increasing productivity in the process of rhamnolipid synthesis by Pseudomonas aeruginosa. In addition to the differences in productivity, the use of different carbon sources resulted in several proportions related to the types of rhamnolipids synthesized (monorhamnolipids and dirhamnolipids). Furthermore, the variation in nutrients, mainly the nitrogen source, resulted in different amounts of virulence factors, as phenazines and extracellular proteins. The data point out a new concern in the choice of substrate to be used for rhamnolipid production by P. aeruginosa: toxic byproducts.  相似文献   
8.
An analytical method based on liquid chromatography-tandem mass spectrometry (LC-MS-MS) was developed for the determination of rhamnolipids. A dispersive liquid-liquid microextraction (DLLME) procedure was used to isolate and concentrate target compounds from aqueous samples collected from surface water, sewage treatment plant effluent and cultivation of microbial culture. Development of the DLLME procedure included optimization of several important parameters such as kind and volume of extracting and dispersing solvents as well as sample pH. Under optimized conditions a two-step extraction with sonication was used. Chloroform was applied as the extracting and acetone as the dispersing solvent. The recoveries of the analytes were 70-87%. Matrix effects investigated for the analytes revealed existence of ionization enhancement for both mono- and dirhamnolipids.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号