首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
  国内免费   1篇
化学   9篇
晶体学   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2012年   1篇
  2010年   1篇
  2008年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
ABSTRACT

Although it is well known that viologen radical cations can self-assemble into stacks or complexes on account of radical-radical pairing interactions, it has only recently been demonstrated that reduction of main-chain polyviologens integrated into hydrogel networks can trigger actuation. In these earlier examples, hydrogels comprising oligoethylene glycol-based polyviologens and poly(ethylene glycol) were functionalized with terminal azide groups to prepare ‘click’-based gels. Here, we report a new structural design for the functional polyviologen that consists of main-chain viologen subunits separated by hexamethylene groups instead of glycols and is capped at each end with styrene groups. Activation of this viologen-based macrocrosslinker was achieved using chemical- and photoreduction methods and its ability to undergo intramolecular chain-folding was monitored by absorption spectroscopy. Acrylate-based organogels and hydrogels were also prepared and a comparison was carried out to assess the actuator performance in each gel in terms of the rate of contraction and changes in stiffness.  相似文献   
2.
Combination therapy such as photothermal therapy (PTT) enhanced chemotherapy is regarded as a promising strategy for cancer treatment. Herein, we developed redox-responsive polymeric vesicles based on the amphiphilic triblock copolymer PCL-ss-PEG-ss-PCL. To avoid the limited therapeutic effect of chemotherapeutic drugs caused by systemic exposures and drug resistance, the redox-sensitive polymeric vesicles were cargoed with two chemotherapeutics: doxorubicin (DOX) and paclitaxel (PTX). Besides, indocyanine green (ICG) was encapsulated, and cell-penetrating peptides and LHRH targeting molecule were modified on the surface of polymeric vesicles. The results indicated that the polymeric vesicles can load different kinds of drugs with high drug loading content, trigger drug release in responsive to the reductive environment, realize high cellular uptake via dual peptides and laser irradiation, and achieve higher cytotoxicity via chemo-photothermal combination therapy. Hence, the redox-responsive LHRH/TAT dual peptides-conjugated PTX/DOX/ICG co-loaded polymeric micelles exhibited great potential in tumor-targeting and chemo-photothermal therapy.  相似文献   
3.
《中国化学快报》2020,31(12):3121-3126
Combination therapy such as photothermal therapy (PTT) enhanced chemotherapy is regarded as a promising strategy for cancer treatment. Herein, we developed redox-responsive polymeric vesicles based on the amphiphilic triblock copolymer PCL-ss-PEG-ss-PCL. To avoid the limited therapeutic effect of chemotherapeutic drugs caused by systemic exposures and drug resistance, the redox-sensitive polymeric vesicles were cargoed with two chemotherapeutics: doxorubicin (DOX) and paclitaxel (PTX). Besides, indocyanine green (ICG) was encapsulated, and cell-penetrating peptides and LHRH targeting molecule were modified on the surface of polymeric vesicles. The results indicated that the polymeric vesicles can load different kinds of drugs with high drug loading content, trigger drug release in responsive to the reductive environment, realize high cellular uptake via dual peptides and laser irradiation, and achieve higher cytotoxicity via chemo-photothermal combination therapy. Hence, the redox-responsive LHRH/TAT dual peptides-conjugated PTX/DOX/ICG co-loaded polymeric micelles exhibited great potential in tumor-targeting and chemo-photothermal therapy.  相似文献   
4.
The synthesis of a calix[4]arene scaffold persubstituted with four redox-active tetrathiafulvalene (TTF) moieties at the lower rim is described. This assembly strongly binds sodium cation, and the binding process is accompanied by a conformational change of the receptor, as shown from NMR titration and by an X-ray diffraction led on the complex. This dynamic behavior remarkably results in a modification of the electrochemical response of TTF probes, which behave independently after sodium complexation.  相似文献   
5.
ABSTRACT

Redox-responsive core cross-linked polymeric micelles were prepared by using azide-alkyne click chemistry. Poly(ethylene oxide)-b-poly(glycidyl methacrylate) (PEO-b-PGMA) copolymers were prepared by the atom transfer radical polymerization, and the PGMA parts were subsequently functionalized with azido groups. The micelles of azido-functional PEO5k-b-PGMA1.1k-N3 were cross-linked using dipropargyl 3,3′-dithiodipropionate as a disulfide-containing cross-linking agent. The block copolymers and polymeric micelles were characterized by using GPC, FT-IR, 1H NMR, TEM, and DLS analyses. The nanoparticle micelles showed much improved structural stability under physiological condition, while they were rapidly dissociated in the 1,4-dithio-D,L-threitol reducing environment.  相似文献   
6.
One dimensional (1D) nanotubes and three dimensional (3D) flowerlike supernanostructures were transformed reversibly, which was controlled by the oxidation and reduction cycle of aromatic diamide-derived thiol 1 and disulfide 2, as evidenced by SEM study. Their self-assembling patterns were investigated by UV-vis, 1H NMR, X-ray crystallographic, and powder X-ray diffraction experiments.  相似文献   
7.
硒,作为一种新的氧化-还原响应位点因其良好的生物相容性日益引起人们的关注,然而,对这种新型氧化-还原响应型表面活性剂的研究相对较少,尤其是其界面性能的智能调控。本文以含硒两性离子表面活性剂苄基十一烷基磺基甜菜碱(BSeUSB)为对象,研究了其分子结构、Krafft温度、表/界面张力及发泡和乳化性能的氧化-还原刺激响应行为。发现在极微量的H_2O_2(≤体系总质量的0.056%)氧化下,BSeUSB分子中疏水的―Se―C―键转变成了具有一定亲水能力的Se=O键,表面活性剂从单头单尾的还原态变成了类Bola型的氧化态,导致表面活性剂的Krafft温度由(23.5±0.5)°C下降至0°C以下,5.00 mmol?L~(-1)时的表/界面张力分别从45.15、5.52 mN·m~(-1)升高至61.63、18.38 m N·m~(-1)。宏观上,还原态具有良好的发泡和乳化性能,而氧化态的发泡和乳化能力几乎消失。再次加入极少量还原剂Na_2SO_3(≤体系总质量的0.060%)后,分子的微观结构和溶液性能又可恢复到初始状态。总之,通过极微量H_2O_2和Na_2SO_3的交替加入,我们实现了该表面活性剂界面性能的智能调控。  相似文献   
8.
The redox-responsive hybrid nanoparticles of P(MACPTS-co-MAGP)@AgNPs is developed for drug delivery and fluorescence monitoring of the drug release by applying the NSET-based strategy.  相似文献   
9.
We synthesized a biothiol-sensitive nanoprobe by assembling gold nanoparticles with a novel redox-responsive silica (ReSi) matrix using dithiobis (succinimidyl propionate) and (3-aminopropyl) trimethoxysilane. Thin layer disulfide-bonded networks of the ReSi could differentially respond to extra- and intracellular glutathione in cancer cells within 30 min; furthermore, targeted cellular uptake could be monitored in situ by fluorescence recovery. Sigmoidal dose–response pattern of the nanoprobes presented in this study were attributed to the buried disulfide-linked 3D nanostructure of the ReSi nanoshell, optimized at an appropriate thickness, enabling not only buffering of small redox disturbances in the extracellular milieu but also the satisfied sensitivity for rapid redox sensing. Such a ReSi-functionalized gold nanoparticle-based nanoconjugate possesses the potential to serve as an effective intracellular drug carrier for future cancer theranostics.  相似文献   
10.
An extended tetrathiafulvalene derivative incorporating a thiophene spacer and a fused crown-ether unit has been synthesized. This highly delocalized system exhibits remarkable electrochemical recognition properties for Na+ and Ba2+ as shown by cyclic voltammetry in methylene chloride. This result is attributed to the proximity between the guest metal cation and the positive charge of the oxidized ligand, which is located on the central conjugated thiophenic part.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号