首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   0篇
  国内免费   1篇
化学   20篇
物理学   2篇
  2023年   2篇
  2020年   2篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2014年   2篇
  2012年   1篇
  2011年   2篇
  2010年   2篇
  2009年   4篇
  2007年   1篇
  2006年   1篇
  2000年   1篇
排序方式: 共有22条查询结果,搜索用时 15 毫秒
1.
A method for the gram-scale production of cellulose-binding domains (CBD) through the proteolytic digestion of a commercial enzymatic preparation (Celluclast) was developed. The CBD obtained, isolated from Trichoderma reesei cellobiohydrolase I, is highly pure and heavily glycosylated. The purified peptide has a molecular weight of 8.43 kDa, comprising the binding module, a part of the linker, and about 30% glycosidic moiety. Its properties may thus be different from recombinant ones expressed in bacteria. CBD-fluorescein isothiocyanate conjugates were used to study the CBD-cellulose interaction. The presence of fluorescent peptides adsorbed on crystalline and amorphous cellulose fibers suggests that amorphous regions have a higher concentration of binding sites. The adsorption is reversible, but desorption is a very slow process.  相似文献   
2.
A novel efficient proteolysis approach was developed based on trypsin-immobilized miniature incandescent bulbs and infrared (IR) radiation. Trypsin was covalently immobilized in the chitosan coating on the outer surface of miniature incandescent bulbs with the aid of glutaraldehyde. When an illuminated enzyme-immobilized bulb was immersed in protein solution, the emitted IR radiation could trigger and accelerate heterogeneous protein digestion. The feasibility and performance of the novel proteolysis approach were demonstrated by the digestion of hemoglobin (HEM), cytochrome c (Cyt-c), lysozyme (LYS), and ovalbumin (OVA) and the digestion time was significantly reduced to 5 min. The obtained digests were identified by MALDI-TOF-MS with the sequence coverages of 91%, 77%, 80%, and 52% for HEM, Cyt-c, LYS, and OVA (200 ng μL−1 each), respectively. The suitability of the prepared bulb bioreactors to complex proteins was demonstrated by digesting human serum.  相似文献   
3.
Mass spectrometry (MS)-based proteome profiling is essential for molecular diagnostics in modern biomedical study. To date, sample preparation including protein extraction and proteolysis is still very challenging and lack of efficiency. Recently tips-based sample preparation protocols exhibit strong potentials to achieve the goal of “a proteome in an hour”. However, in-tip proteolysis is still rarely reported and far from ideal for dealing with complex bio-samples. In this work, nanoreactors encapsulated micropipette tips were demonstrated as high performance devices for fast (∼minutes) and multiplexing proteolysis to assist the profiling of cancer cells proteome. Nanoporous silica materials with controlled pore size and surface chemistry were prepared as nanoreactors and encapsulated in micropipette tips for efficient in situ proteolysis. The as-constructed device showed desirable sensitivity (LOD of 0.204 ± 0.008 ng/μL and LOQ of 0.937 ± 0.055 ng/μL), selectivity, stability (two months under −20 °C), reusability (at least 10 times), and little memory effect in MS based bottom-up proteomic analysis. It was used for comprehensive protein mapping from cancer cell lines. The number of identified proteins was increased by 18%, 22%, 52%, and 52% dealing with HepG2, F56, MCF7, and HCCLM3 cancer cells, compared to traditional in-solution proteolysis based bottom-up proteomic strategy. With the enhanced performance, our work built a novel, efficient and miniaturized platform for facile proteomic sample preparation, which is promising for advanced biomarkers discovery in biomedical study.  相似文献   
4.
Proteolytic (18)O-labeling of peptides has been studied and optimized in order to improve the labeling efficiency and to accelerate the process without increasing the degree of incomplete labeling. Using peptides generated from tryptic digested bovine serum albumin (BSA) and cytochrome c as model proteins, it was shown that complete labeling was achieved after 2 h at pH 6. To increase the sample throughput in a bottom-up proteomic setup, tryptic digestion of proteins in-solution was replaced with tryptic digestion using immobilized trypsin. As a result, an integrated approach was made possible, where both digestion (pH 8) and (18)O/(16)O-labeling of the resulting peptides (pH 6) were done using immobilized trypsin beads. This simplified the sample handling and reduced the overall reaction time significantly: the setup enabled tryptic digestion and (18)O/(16)O-labeling without sample transfer steps within 3.5 h with average (18)O/(16)O-ratios of 0.96±0.13 in aqueous buffer. The initial results were confirmed with a more complex matrix, by spiking urine with the model proteins, yielding results comparable with the ratios obtained in buffer. Satisfying ratios were also achieved regarding urinary proteins identified in a full scale bottom-up experiment. Average (18)O/(16)O-peptide ratios of 0.83±0.13 and 0.91±0.27 indicated good performance in a highly relevant matrix for biomarker discovery.  相似文献   
5.
In this paper, we synthesized a series of proteolysis targeting chimeras(PROTACs) using VHL E3 ligase ligands for BRD4 protein degradation. One of the most promising compound 19g exhibited robust potency of BRD4 inhibition with IC50 value of (18.6±1.3) nmol/L, respectively. Furthermore, compound 19g potently inhibited cell proliferation in BRD4-sensitive cell lines RS4;11 with IC50 value of (34.2±4.3) nmol/L and capable of inducing degradation of BRD4 protein at 0.4—0.6 µmol/L in the RS4;11 leukemia cells. These data show that compound 19g is a highly potent and efficacious BRD4 degrader.  相似文献   
6.
Macrophage polarization plays a crucial role in inflammatory processes. The histone deacetylase 3 (HDAC3) has a deacetylase-independent function that can activate pro-inflammatory gene expression in lipopolysaccharide-stimulated M1-like macrophages and cannot be blocked by traditional small-molecule HDAC3 inhibitors. Here we employed the proteolysis targeting chimera (PROTAC) technology to target the deacetylase-independent function of HDAC3. We developed a potent and selective HDAC3-directed PROTAC, P7 , which induces nearly complete HDAC3 degradation at low micromolar concentrations in both THP-1 cells and human primary macrophages. P7 increases the anti-inflammatory cytokine secretion in THP-1-derived M1-like macrophages. Importantly, P7 decreases the secretion of pro-inflammatory cytokines in M1-like macrophages derived from human primary macrophages. This can be explained by the observed inhibition of macrophage polarization from M0-like into M1-like macrophage. In conclusion, we demonstrate that the HDAC3-directed PROTAC P7 has anti-inflammatory activity and blocks macrophage polarization, demonstrating that this molecular mechanism can be targeted with small molecule therapeutics.  相似文献   
7.
Ting Liu 《Talanta》2009,77(5):1767-137
In this report, trypsin was immobilized on silica-coated fiberglass core in microchip to form a core-changeable bioreactor for highly efficient proteolysis. To prepare the fiber core, a layer of organic-inorganic hybrid silica coating was prepared on the surface of a piece of glass fiber by a sol-gel method with tetraethoxysilane (TEOS) and 3-aminopropyltriethoxysilane (APTES) as precursors. Subsequently, trypsin was immobilized on the coating with the aid of glutaraldehyde. Prior to use, the enzyme-immobilized fiber was inserted into the channel of a microchip to form an in-channel fiber bioreactor. The novel bioreactor can be regenerated by changing its fiber core. The scanning electron microscopy images of the cross-section of a trypsin-immobilized fiber indicated that a layer of ∼1 μm thick film formed on the glass substrate. The feasibility and performance of the unique bioreactor were demonstrated by the tryptic digestion of bovine serum albumin (BSA) and cytochrome c (Cyt-c) and the digestion time was significantly reduced to less than 10 s. The digests were identified by MALDI-TOF MS with sequence coverages of 45% (BSA) and 77% (Cyt-c) that were comparable to those obtained by 12-h conventional in-solution tryptic digestion. The fiber-based microchip bioreactor provides a promising platform for the high-throughput protein identification.  相似文献   
8.
In this work, a novel and facile monolithic enzymatic microreactor was prepared in the fused-silica capillary via a two-step procedure including surface acryloylation and in situ aqueous polymerization/immobilization to encapsulate a single enzyme, and its application to fast protein digestion through a direct matrix-assisted laser desorption/ionization time-of-flight mass spectrometer (MALDI-TOF-MS) analysis was demonstrated. At first, vinyl groups on the protein surface were generated by a mild acryloylation with N-acryloxysuccinimide in alkali buffer. Then, acryloylated enzyme was encapsulated into polyacrylates by free-radical copolymerization with acrylamide as the monomer, N,N′-methylenebisacrylamide as the cross-linker, and N,N,N′,N′-tetramethylethylenediamine/ammonium persulfate as the initiator. Finally, polymers were immobilized onto the activated inner wall of capillaries via the reaction of vinyl groups. Capability of the enzyme-immobilized monolithic microreactor was demonstrated by myoglobin and bovine serum albumin as model proteins. The digestion products were characterized using MALDI-TOF-MS with sequence coverage of 94% and 29% observed. This microreactor was also applied to the analysis of fractions through two-dimensional separation of weak anion exchange/reversed-phase liquid chromatography of human liver extract. After a database search, 16 unique peptides corresponding to 3 proteins were identified when two RPLC fractions of human liver extract were digested by the microreactor. This opens a route for its future application in top–down proteomic analysis.  相似文献   
9.
Ultrasound (US) is an emerging technology capable of affecting enzymes and microorganisms, leading to the release of amino acids and the formation of volatile compounds. The effect of different exposure times (0, 3, 6, and 9 min) of US (25 kHz, 128 W) on the proteolysis and volatile compounds of dry fermented sausages during processing (day 0 and 28) and storage (day 1 and 120) was investigated. Lower alanine, glycine, valine, leucine, proline, methionine, and tyrosine levels were observed at the beginning of manufacture for the sample subjected to 9 min of US (p < 0.05) when compared to the control. During the storage period, the samples subjected to US exposure for 3 and 6 min exhibited higher free amino acid levels. A greater formation of hexanal, pentanal, and hexanol was observed in the US-treated samples when compared to the control (p < 0.05), as well as other derivatives from the oxidation reactions during the storage. The use of US (25 kHz and 128 W) in the manufacture of dry fermented sausages can affect the proteolysis and the formation of compounds derived from lipid oxidation during the storage.  相似文献   
10.
This work aims at studying the optimization of an on‐line capillary electrophoresis (CE)‐based tryptic digestion methodology for the analysis of therapeutic polypeptides (PP). With this methodology, a mixture of surrogate peptide fragments and amino acid were produced on‐line by trypsin cleavage (enzymatic digestion) and subsequently analyzed using the same capillary. The resulting automation of all steps such as injection, mixing, incubation, separation and detection minimizes the possible errors and saves experimental time. In this paper, we first study the differents parameters influencing PP cleavage inside the capillary (plug length, reactant concentration, incubation time, diffusion and electrophoretic plugs mixing). In a second part, the optimization of the electrophoretic separation conditions of generated hydrolysis products (nature, pH and ionic strength (I) of the background electrolyte (BGE)) is described. Using the optimized conditions, excellent repeatability was obtained in terms of separation (migration times) and proteolysis (number of products from enzymatic hydrolysis and corresponding amounts) demonstrating the robustness of the proposed methodology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号