首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
化学   2篇
  2019年   1篇
  1997年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Complexity is a concept that is being considered in chemistry as it has shown potential to reveal interesting phenomena. Thus, it is possible to study chemical phenomena in a new approach called systems chemistry. The systems chemistry has an organization and function, which are regulated by the interactions among its components. At the simplest level, noncovalent interactions between molecules can lead to the emergence of large structures. Consequently, it is possible to go from the molecular to the supramolecular systems chemistry, which aims to develop chemical systems highly complex through intra- and intermolecular forces. Proper use of the interactions previously mentioned allow a glimpse of supramolecular system chemistry in many tasks such as structural properties reflecting certain behaviors in the chemistry of materials, for example, electrical and optical, processes of molecular recognition and among others. In the last time, within this area, inorganic supramolecular systems chemistry has been developed. Those systems have a structural orientation which is defined by certain forces that predominate in the associations among molecules. It is possible to recognize these forces as hydrogen bonding, π-π stacking, halogen bonding, electrostatic, hydrophobic, charge transfer, metal coordination, and metallophilic interactions. The presence of these forces in supramolecular system yields certain properties such as light absorption and luminescence. The quantum theoretical modeling plays an important role in the designing of the supramolecular system. The goal is to apply supramolecular principles in order to understand the associated forces in many inorganic molecules that include heavy metals for instance gold, platinum, and mercury. Relevant systems will be studied in detail, considering functional aspects such as enhanced coordination of functionalized molecular self-assembly, electronic and optoelectronic properties.  相似文献   
2.
Density functional theory (DFT) with the Becke's three-parameter exchange correlation functional and the functional of Lee, Yang and Parr, gradient-corrected functionals of Perdew, and Perdew and Wang [the DFT(B3LYP), DFT(B3P86) and DFT(B3PW91) methods, respectively], and several levels of conventional ab initio post-Hartree-Fock theory (second- and fourth-order perturbation theory M?ller-Plesset MP2 and MP4(SDTQ), coupled cluster with the single and double excitations (CCSD), and CCSD with perturbative triple excitation [CCSD(T)], configuration interaction with the single and double excitations [CISD], and quadratic configuration interaction method [QCISD(T)], using several basis sets [ranging from a simple 6-31G(d,p) basis set to a 6-311+ +G(3df, 2pd) one], were applied to study of the molecular structure (geometrical parameters, rotational constants, dipole moment) and harmonized infrared (IR) spectrum of formaldehyde (CH2O). High-level ab initio methods CCSD(T) and QCISD(T) with the 6-311+ +G(3df, 2pd) predict correctly molecular parameters, vibrational harmonic wavenumbers and the shifts of the harmonic IR spectrum of 12CH2 16O upon isotopic substitution. Received: 30 January 1997 / Accepted: 7 May 1997  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号