首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
化学   5篇
物理学   1篇
  2013年   1篇
  1998年   1篇
  1997年   2篇
  1990年   1篇
  1985年   1篇
排序方式: 共有6条查询结果,搜索用时 0 毫秒
1
1.
Summary The advantages and disadvantages of high performance precipitation liquid chromatography have been demonstrated for polystyrene homopolymers. Depending on the mobile phase composition at the dissolution point of the polymeric sample and surface properties of the stationary phase, elution is governed either by a solution process or by adsorption. A contribution by adsorption was noticed on silica as well as on reversed phases based on silica with a normal phase gradient of increasing polarity (heptane to dichloromethane). Elution was solely governed by solubility of the polymers on both types of stationary phase for polystyrenes with a molecular weight above 35 000 and reversed phase gradient of decreasing polarity (methanol to dichloromethane). Under these conditions an identical dependence of elution solvent composition on sample size was found as for turbidity titrations. Due to differences in the velocity of the eluent front and the polymeric sample with porous stationary phases the polymers can be eluted as colloidal solutions Non-porous stationary phases are superior in this respect because the velocities of eluent and solutes are identical.  相似文献   
2.
Polymers can be characterized under sorption conditions, to obtain information on molar mass and chemical composition. In order to get a better understanding of their retention behaviour under such conditions, the evaluation of thermodynamic parameters obtained from van't Hoff analyses on low-molar-mass polystyrenes (PS) and polyesters (PE) in various THF–water mixtures on a C18 column is described in this study. Linear van't Hoff behaviour was observed in almost all cases. Negative values for both ΔH and ΔS were found for both PS and PE oligomers, which increase with increasing %THF. For ΔS this is explained from multi-site attachment effects. For PS, the non-linear relations between ΔH and ΔS, and degree of polymerization (p) could be properly described by the Stockmayer–Fixman equation. Although less clear, similar trends were found for PE. For PS, evidence for penetration effects of oligomer chains into the bonded chains was obtained. Martin plots for both PS and PE were shown to be non-linear in all investigated eluent compositions. The extent of non-linearity is suggested to depend on the conformation of a polymer in solution. No distinct enthalpy–entropy-compensation temperature (EECT) independent of p was found for PS, thus confirming the findings of an earlier study in which no exact molar mass independence was found under critical conditions. Further evaluation of EECT for PS oligomers revealed a retention mechanism independent of the binary eluent composition. This indicates that conclusions from this study can also be used for a qualitative understanding of sorption mechanisms in the gradient elution mode. Finally, for PS it was shown that ΔG equals zero under critical conditions, thus confirming theoretical predictions.  相似文献   
3.
Pyrolysis-capillary GC has been applied to the analysis of chemically derivatized polystyrenes. The reproducibility of the method and the influence of instrumentation has been discussed.  相似文献   
4.
Abstract

Healing of symmetric interfaces of amorphous anionically polymerized high‐ and ultrahigh‐molecular weight (HMW and UHMW, respectively) polystyrene (PS) in a range of the weight‐average molecular weight M w from 102.5 (M w/M n = 1.05) to 1110 kg/mol (M w/M n = 1.15) was followed at a constant healing temperature, T h, well below the glass transition temperature of the polymer bulk [T g‐bulk = 105–106°C as measured by differential scanning calorimeter (DSC)]. The bonded interfaces were shear fractured in tension on an Instron tester at ambient temperature. Autoadhesion at symmetric HMW PS–HMW PS and UHMW PS–UHMW PS interfaces was detected mechanically after healing at T h = 38°C for 107 hr, and even at 24°C (for longer healing times). The occurrence of autoadhesion between the surfaces of the UHMW PS with M w = 1110 kg/mol at 24°C implies that the glass transition temperature at the interface, T g‐interface, of this polymer was a least lower: by 82°C than its DSC T g‐bulk, by 30–40°C than the Vogel temperature, T —the lowest theoretical value of a kinetic T g‐bulk at infinite long time—and by 20°C than T 2 (a “true” thermodynamic T g‐bulk corresponding to a second‐order phase transition temperature). To our knowledge, this is the first observation of such nature, which gives further evidence of the lowering of the T g at polymeric surfaces and the persistence of this effect at early stages of healing of polymer–polymer interfaces.  相似文献   
5.
Light scattering measurements in toluene solutions are performed for a series of monodisperse polystyrenes with a molecular weight Mw range from 4×103 to 8×106. The scattered polarized intensities Iv and the natural depolarization ratios ρn are registered with different apparatus at λ=633 or 488 nm and the Mw values are deduced through different formulae. The complete Carr and Zimm formula (CLa), from Iv and ρn, and the usual simplified formula (CLb), from Iv, are considered for the classical method. An already demonstrated formula is considered for the new method (New). Values of Mw and related parameters do not depend on the experimental systems used but deviations appear when using different formulae. The deviations are generally low (about 10%) but often systematic: Mw(CLa)<Mw(CLb)<Mw(New). The most important difference concerns the effect of destructive interferences for Mw>5×105: the new formula leads to a lower increase from θ=90° to θ→0 for Mw values (θ is the observation angle). For instance, in the 8×106 sample, Mw(θ→0)/Mw(θ=90°)=3.6 instead of 6.1, which implies a revision of the usual determination of the radius of gyration, Rg.  相似文献   
6.
Summary The reversed phase behaviour of high molecular mass polystyrenes was investigated on a C18 bonded phase column using acetonitrile as the polar mobile phase component and dichloromethane, chloroform and carbon tetrachloride, as separate nonpolar components. Solvent solubility compositions, elution compositions and resolutions of the various molar mass polystyrenes were measured and compared for each of the three mobile phases. Anomalous behaviour of the polystyrenes was not observed in any of the three mobile phases and only minor differences in resolution were observed. By comparing these results with previously published work, it is suggested that any mobile phase component that is both nonpolar and a good solvent for the polymer can be combined with acetonitrile for effective separations of polystyrenes by mass and that it is the poor solvent component of the mobile phase that is responsible for the anomalous behaviour that is sometimes observed in this type of chromatography.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号