首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   0篇
化学   22篇
  2012年   1篇
  2000年   3篇
  1998年   13篇
  1997年   1篇
  1996年   4篇
排序方式: 共有22条查询结果,搜索用时 421 毫秒
1.
CrIII Phthalocyaninates: Synthesis, Properties, and Crystal Structure of l-Bis(triphenylphosphine)iminium trans-Di(nitrito(O))phthalocyaninato(2–)chromate(III) [Cr(H2O)2Pc2?]Ix reacts with excess (PNP)NO2 in dimethylformamide to yield less soluble greenblack l-bis(triphenylphosphine)iminium trans-di(nitrito(O))phthalocyaninato(2–)chromate(III), l(PNP)trans[Cr(ONO)2Pc2?], which crystallizes in the triclinic space group P1 (No. 2) with Z = 2. The Cr atom is in the center of the Pc2? ligand and the two nitrite ions are monodentate O-coordinated in a mutually trans arrangement to the Cr atom. The Cr? O and Cr? Niso bond distances are 1.9898(14) und 1.981(2) Å, respectively. The geometric data of the coordinated nitrite ion are: d(N? O) = 1.307(2) Å; d(N? O) = 1.205(2) Å; ?(O? N? O) = 113.7(2)°; ?(Cr? O? N) = 116.85(12)°. The non-bonding O atoms are trans to the Cr atom. The Pc2? ligand is slightly saddled. Three weak spin-allowed trip-quartet(TQ) transitions (in 103 cm?1): TQ1 (8.20) < TQ2 (11.3) < TQ3 (20.33) and the characteristic π-π* transitions of the Pc2? ligand: B (14.68) < Q1 (27.1) < Q2 (29.0) < N (35.4) are observed in the UV-VIS-NIR spectrum. Prominent luminescence spectra are obtained by excitation within the TQ1 region, in which the spin-forbidden trip-sextet transition at 7376 cm?1 dominates at low temperatures (T < 50 K). The vibrational spectra are discussed. In coincidence of the excitation lines with TQ3, vs(Cr? O) at 378 cm?1 is selectively resonance Raman (RR) enhanced. vas(Cr? O) is observed in the FIR spectrum at 391 cm?1. The following internal vibrations (in cm?1) of the nitrito ligand are in the MIR spectrum: vas(N? O)/1447 > vas(N? O)/1018/1029 > δ(O? N? O)/828 and in the RR-spectrum: vs(N? O)/1410 > vs(N? O)/952, the last followed by three overtones.  相似文献   
2.
Triphenylphosphine Oxide (L) as Solvent and Ligand for Metallophthalocyaninates; Synthesis and Structure of [{Li(L)}2(μ‐pc)], [Li(L)4][Lipc] · Solvate, [Mg(L)pc] · Solvate, and [Zn(L)pc] · Solvate Triphenylphosphine oxide (L) coordinates to metallophthalocyaninates of Li, Mg and Zn at 300 °C. After purification and recrystallization in different solvents the very soluble and stable title compounds have been isolated and structurally characterized. In [{Li(L)}2(μ‐pc)], the Li atom lies in a distorted tetragonal pyramid of four isoindole N atoms (Ni) at a distance varying between 2.163(5) and 2.301(5) Å, and an O atom at 1.863(5) Å. In [Li(L)4] · [Lipc] · S, the Li atom of the cation coordinates four O atoms in a distorted tetrahedral arrangement at a distance varying from 1.887(9) to 1.953(9) Å, while the Li atom of the anion is in a quasi quadratic planar geometry of four Ni atoms (1.951(9)–1.977(9) Å) with the Li atom being displaced by 0.15 Å out of the (Ni)4 plane. The structural data of the distorted tetragonal pyramidale Mg(Ni)4O moiety in [Mg(L)pc] and the solvates [Mg(L)pc] · S (S = CH2Cl2, thf, 2py) generally do not vary significantly: Mg–Ni/2.035(3) –2.061(3) Å, Mg–O/1.955(2)–2.000(3) Å. The Mg atom is displaced by ca. 0.52 Å out of the (Ni)4 plane towards the O atom and the Mg–O–P moiety is bent (ca. 153°). [Zn(L)pc] · S crystallizes as a mixed crystal of equal parts of the conformer with a bent (155.1(3)°) and that of a quasi linear Zn–O–P moiety (174.2(3)°). Structural data of the Zn(Ni)4O moiety: (Zn–Ni)av: 2.024/2.013 Å; Zn–O: 2.050(4)/2.081(4) Å; Zn–(Ni)4: 0.40/0.33 Å. In the crystal, the Mg and Zn derivates aggregate in double layers forming pairs. The pc ligands in the triclinic complexes with good overlap of the neighbouring pc ligands are in a waving conformation, while those in the monoclinic complexes with weak overlap are in a concave conformation.  相似文献   
3.
trans -Bis(triphenylphosphine)phthalocyaninato(2–)rhenium(II): Synthesis, Properties, and Crystal Structure Dirheniumheptoxide reacts with phthalodinitrile in boiling 1-chloronaphthalene and subsequent reprecipitation of the green raw product from conc. sulfuric acid to yield an oxo-phthalocyaninate of rhenium, which is reduced by molten triphenylphosphine forming dark green trans-bis(triphenylphosphine)phthalocyaninato(2–)rhenium(II), trans[Re(PPh3)2pc2–]. The latter crystallizes triclinic in the space group P 1 with the cell parameters as follows: a = 11.512(2) Å, b = 12.795(2) Å, c = 12.858(2) Å, α = 64.42(2)°, β = 79.45(2)°, γ = 72.74(1)°; V = 1628.1(5); Z = 1. Re is in the centre of the (Np)4 plane (Np: N1, N3) and coordinates two triphenylphosphine ligands axially in trans position. The average Re–Np and Re–P distances are 2.007(1) and 2.516(3) Å, respectively. Despite the many extra bands the typical B, Q and N regions of the pc2– ligand are observed at ca. 16500, 28900/32900 and 35300 cm–1. A weak band group at ca. 8900 cm–1 is attributed to a trip-multiplet transition, another one at ca. 14500 cm–1 to a P → Re charge transfer. The vibrational spectra are dominated by internal vibrations of the pc2– ligand. The very weak intensity of the IR bands at 905 and 1327 cm–1 are diagnostic of the presence of ReII.  相似文献   
4.
C–H-Activation: Syntheses and Properties of Acetonato( C )-acidophthalocyaninato(2–)metallates(III) of Rhodium and Iridium; Crystal Structure of Tetra(n-butyl)ammonium Acetonato( C )azidophthalocyaninato(2–)iridate(III) Phthalocyaninato(2–)metallate(I) of rhodium and iridium reacts with carbonyl substrates like acetone or acetylacetone and halides or pseudohalides forming acetonato(C)- or acetylacetonato(C)acidophthalocyaninato(2–)metallates(III), that are isolated as tetra(n-butyl)ammonium complex salts (nBu4N)[M(R)(X)pc2–] (M = Rh, Ir; R = aC, acaC; X = Cl, I, N3, SCN/NCS). (nBu4N)[Ir(aC)(N3)pc2–] · 0,25(C2H5)2O · 0,5 CH2Cl2 crystallizes in the triclinic space group P1 with cell parameters a = 16.267(8) Å, b = 17.938(3) Å, c = 18.335(4) Å, α = 74.77(2)°, β = 73.73(3)°, γ = 84.25(3)°, V = 4954(3) Å3, Z = 4. There are two crystallographically independent anions, differing by the orientation of the azido ligand either towards an isoindole group or a Naza bridge of the phthalocyaninate, while the σ-C bonded acetonate is always oriented towards an isoindole group (gauche and ecliptical configuration). The Ir–C distances are 2.12(1) and 2.14(1) Å. Due to the trans influence of the acetonate-C atom the Ir-azide-N distances of 2.22(1)/2.24(1) Å are longer than expected. The electrochemical properties and the optical, vibrational, and 1H-NMR spectra are discussed.  相似文献   
5.
cis-Trichlorophthalocyaninato(2?)tantalate(V) reacts with excess tetra(n-butyl)ammonium fluoride trihydrate yielding mixed crystals of the tetra(n-butyl)ammonium salts of cis-tetrafluorophthalocyaninato(2?)tantalate(V) and cis-trifluorophthalocyaninato(2?)tantalate(IV) in the ratio five to four. These crystallize in the monoclinic space group P21/ n with cell parameters: a = 13.368(2) Å, b = 13.787(2) Å, c = 23.069(3) Å, β = 93.35(1)°, Z = 4. Tav is octacoordinated with four F atoms and four Niso atoms in an antiprismatic cis-arrangement. The Tav-F distance varies from 1.919(7) to 1.966(4) Å. TaIV is heptacoordinated with three F atoms in a cis-arrangement. The TaIV-F distance varies from 1.74(1) to 1.966(4) Å. The Ta atom is located out of the centre of the N4 plane towards the F atoms by 1.234(3) Å. The Ta–N distances range from 2.261(6) to 2.310(6) Å.  相似文献   
6.
OsII Phthalocyaninates(2?): Synthesis and Properties of (Halo)(carbonyl)phthalocyaninato-(2?)osmate(II) Soluble, blue tetra(n-butyl)ammonium (halo)(carbonyl)phthalocyaninato(2?)osmate(II), (nBu4N)[Os(X)(CO)Pc2?] (X = Cl, Br, I) is obtained by the reaction of [Os(THF)(CO)Pc2?] (THF: tetrahydrofurane) with (nBu4N)X in THF. In the cyclovoltammograms there are three reversible electrode processes at ?1.21 ± 0.01, 0.18 ± 0.04 and 0.65 ± 0.01 V assigned to the three redox pairs Pc2?/Pc3?, OsII/OsIII and Pc2?/Pc3?. In the electronic absorption spectra only the intense B and Q regions are observed at ~ 15800 resp. 27500, 33000 cm?1. The infrared and resonance Raman spectra closely resemble those of other phthalocyaninates(2?) of low valent osmium. In the infrared spectrum v(C? O) is detected at 1896 ± 4 cm?1 and v(Os? X) at 260 (X = Cl), 175 (X = Br) or 143 cm?1 (X = I).  相似文献   
7.
Ruthenium(II)-Phthalocyaninates(1–): Synthesis and Properties of (Halo)(carbonyl)phthalocyaninato(1–)ruthenium(II) Brown-violet (halo)(carbonyl)phthalocyaninato(1–)ruthenium(II), [Ru(X)(CO)Pc?] (X = Cl, Br) is prepared by oxidation of [Ru(X)(CO)Pc2?]? with the corresponding halogen or dibenzoylperoxide. The eff. magnetic moment μeff = 1.74 (X = Cl), 1.68 μB (Br) confirms the presence of a low-spin RuII complex of the Pc? radical. Accordingly, only the first ring oxidation at ~0.64 V and the first ring reduction at ~ ?1.19 V is observed in the cyclovoltammogram of [Ru(X)(CO)Pc2?]?. The UV-VIS-NIR spectra characterizing a monomeric Pc? radical with intense π-π* transitions at 14500, 19800, 25100 and 33900 cm?1 are compared with those of [Ru(Cl)2Pc?] and of monomeric as well as dimeric [Zn(Cl)Pc?]. The IR and resonance Raman(RR) spectra are characteristic for a Pc? radical, too. Diagnostic in-plane vibrations of the Pc? ligand are in the IR spectrum at 1071, 1359, 1445 cm?1 and in the RR spectrum (λ0 = 488.0 nm) at 567, 1597 cm?1. v(C? O) at 1950 cm?1 and v(Ru? X) at 260 (X = Cl) resp. 184 cm?1 (X = Br) are observed only in the IR spectrum.  相似文献   
8.
Preparation and Properties of Phthalocyaninato(2–)indates(III) with Monodentate Acido Ligands; Crystal Structure of Tetra(n-butyl)ammonium cis -Difluorophthalocyaninato(2–)indate(III) Hydrate Tetra(n-butyl)ammonium cis-diacidophthalocyaninato(2–)indates(III) with the monodentate acido ligands fluoride, chloride, cyanide and formiate are synthezised by the reaction of chlorophthalocyaninatoindium(III) or cis-dihydroxophthalocyaninatoindate(III) with the respective tetra(n-butyl)ammonium salt or ammonium formiate and are characterized by their UV/VIS spectra and their vibrational spectra. The difluoro-complex salt crystallizes as a hydrate ((nBu4N)cis[In(F)2pc2–] · H2O) in the monoclinic space group P21/n (no. 14) with cell parameters: a = 13.081(3) Å, b = 13.936(2) Å, c = 23.972(2) Å; β = 97.79(1)°, Z = 4. Hexa-coordinated indium is surrounded by four isoindole nitrogen atoms (Niso) and two cis-positioned fluorine atoms. The average In–F and In–Niso distance are 2.0685(4) and 2.2033(5) Å, respectively, and the F–In–F angle is 81.5(1)°. The In atom is displaced outside the centre (Ct) of the Niso plane towards the fluoride ligands: d(In–Ct) = 0.953(1) Å. The phthalocyaninato(2–) core is nonplanar (unsymmetrical concave distortion).  相似文献   
9.
Syntheses and Properties of Phthalocyaninato(2–)metallates(I) of Cobalt, Rhodium, and Iridium; Crystal Structure of Tetra(n-butyl)ammonium Phthalocyaninato(2–)cobaltate(I) Acetone Solvate Cobaltphthalocyaninate(2–) reacts with tetra(n-butyl)ammonium boranate in acetone yielding soluble tetra(n-butyl)ammonium phthalocyaninato(2–)cobaltate(I). The green platelets of its acetone solvate crystallize in the monoclinic space group P1 21/c (no. 14) with cell parameters: a = 12.370(1) Å, b = 23.370(3) Å, c = 15.952(8) Å, β = 93.55(2)°, Z = 4. The Co atom is located in the centre of the distorted phthalocyaninate (waving distortion). The average Co–Niso distance is 1.894 Å. Dichlorophthalocyaninato(2–)metal(III) acid of rhodium and iridium reacts in boiling sodium isopropylate/isopropanol with tetra(n-butyl)ammonium boranate yielding violet tetra(n-butyl)ammonium phthalocyaninato(2–)rhodate(I) and -iridate(I). The UV-VIS-NIR spectra show normal π–π* transitions of the pc2– ligand which are shifted in the series Co < Rh < Ir to higher energy. Absorbances (in 103 cm–1) at 18.2/19.4/21.4/23.6 (Co), 22.0/22.8/40.4 (Rh) and 25.6 (Ir) are assigned to M → pc2– charge transfer transitions. The vibrational spectra are typical for the pc2– ligand. The very low absorbance of the IR bands at 916/1067/1330 cm–1 is diagnostic for low-valent metal phthalocyaninates.  相似文献   
10.
Mono- and Dinuclear MoII Phthalocyaninates(2–): Syntheses and Properties of Bis(cyano)phthalocyaninato(2–)molybdate(II) and Bis(phthalocyaninato(2–)molybdenum(II)) Blue diamagnetic bis(phthalocyaninato(2–)molybdenum(II)) is synthezied by reduction of oxophthalocyaninato(2–)molybdenum(IV) with boiling triphenylphosphine. The Mo–Mo stretching vibration ist observed in the resonance Raman spectrum at 374 cm–1. It is chemically inert and dissolves in conc. sulfuric acid without decomposition. It reacts with molten tetra(n-butyl)ammonium cyanide to yield redbrown paramagnetic bis[tetra(n-butyl)ammonium] biscyanophthalocyaninato(2–)molybdate(II) (μeff = 3.15 μB; S = 1). The complex salt is very instable and demetallizes in solution. In the extraordinary UV-VIS-NIR spectrum an intense trip-triplet transition at 7780 cm–1 together with a very structured B region between 14000 and 21000 cm–1 of comparable absorbance is observed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号