首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   0篇
  国内免费   1篇
化学   26篇
物理学   5篇
  2024年   1篇
  2023年   3篇
  2022年   6篇
  2021年   1篇
  2020年   2篇
  2019年   2篇
  2018年   2篇
  2017年   3篇
  2016年   1篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2003年   1篇
  1998年   1篇
排序方式: 共有31条查询结果,搜索用时 156 毫秒
1.
2.
磁载纳米TiO2光催化剂的制备及其光催化性能研究   总被引:14,自引:0,他引:14  
采用肼((NH2)2*H2O)还原硝酸铁(Fe(NO3)3)法制备纳米级磁基体(Fe3O4), 以聚乙二醇对其表面进行改性, 通过溶胶-凝胶法制得TiO2/Fe3O4磁载纳米TiO2光催化剂, 并用于光催化降解橙黄-II, 对其活性进行评价. 结果表明 TiO2/Fe3O4光催化剂的降解率在第一次使用时与纯TiO2相近, 三次循环使用后, 仍能保持较高的催化活性. 催化剂的最佳用量为4 g/L, 在酸性和碱性环境中均能保持很好的催化活性.  相似文献   
3.
TiO2-ZnO nano-powders with different TiO2/ZnO ratios have been synthesized by hydrothermal method. Nanocomposite coating films consisting of TiO2-ZnO and Zn with thickness of 20 μm have been electrophoreted on steel plates by rapid plating from a ZnO-based alkaline bath. X-ray diffraction, scanning electron microscopy and energy dispersive X-ray analysis were used to investigate the structure, the size distribution, and the composition of prepared nano-powders and plated materials. The effect of the operating parameters such as powder contents, pH and current density on the electrophoresis process has been investigated and optimum conditions of coating process were determined. Corrosion properties of plated samples have been studied by salt spray test. The catalytic activity of the prepared nanocomposite Zn-TiO2-ZnO films for the photocatalytic degradation of 2-chlorophenol (2-CP) was measured.  相似文献   
4.
5.
Photocatalytic organic functionalization reactions represent a green, cost-effective, and sustainable synthesis route for value-added chemicals. However, heterogeneous photocatalysis is inefficient in directly activating ammonia molecules for the production of high-value-added nitrogenous organic products when compared with oxygen activation in the formation of related oxygenated compounds. In this study, we report the heterogeneous photosynthesis of benzonitriles by the ammoxidation of benzyl alcohols (99 % conversion, 93 % selectivity) promoted using BiOBr nanosheets with surface vacancy associates. In contrast, the main reaction of catalysts with other types of vacancy sites is the oxidation of benzyl alcohol to benzaldehyde or benzoic acid. Experimental measurements and theoretical calculations have demonstrated a specificity of vacancy type with respect to product selectivity, which arises from the adsorption and activation of NH3 and O2 that is required to promote subsequent C−N coupling and oxidation to nitrile. This study provides a better understanding of the role of vacancies as catalytic sites in heterogeneous photocatalysis.  相似文献   
6.
7.
用高温热水解法制备高活性TiO2纳米微晶光催化剂   总被引:24,自引:0,他引:24  
采用钛酸四西酯在有机溶剂中高温热水解与结晶同时进行的方法,制备了二氧化钛纳米微晶光催化剂.以XRD、BET、TEM、TG和DTA等方法对获得的微晶进行了表征.所制得的TiO2纳米微晶平均值径约为12nm,比表面积在100m2·g-1以上,并能在报宽的煅烧温度范围内保持锐钛矿型晶体结构.将它应用于光分解甲基橙,具有高的光催化活性.  相似文献   
8.
Titanium dioxide photocatalysts co-doped with iron (III) and lanthanum were prepared by a facile sol-gel method. The structure of catalysts was characterized by X-ray diffraction (XRD), Raman spectroscopy, UV-vis diffuse reflectance spectroscopy and X-ray photoelectron spectroscopy (XPS). The photocatalytic activities of the samples were evaluated by the degradation of methylene blue in aqueous solutions under visible light (λ > 420 nm) and UV light irradiation. Doping with Fe3+ results in a lower anatase to rutile (A-R) phase transformation temperature for TiO2 particles, while doping with La3+ inhibits the A-R phase transformation, and co-doping samples indicate that Fe3+ partly counteracts the effect of La3+ on the A-R transformation property of TiO2. Fe-TiO2 has a long tail extending up the absorption edges to 600 nm, whereas La-TiO2 results in a red shift of the absorption. However, Fe and La have synergistic effect in the absorption of TiO2. Compared with Fe3+ and La3+ singly doped TiO2, the co-doped simple exhibits excellent visible light and UV light activity and the synergistic effect of Fe3+ and La3+ is responsible for improving the photocatalytic activity.  相似文献   
9.
In this work, we report the synthesis of CdS-incorporated porous WS2 by a simple hydrothermal method. The structural, morphological, and optical properties of the samples were examined by X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FTIR), high resolution X-ray photoelectron spectroscopy (XPS) and UV–visible spectrometry. The photocatalytic activities were established for degradation of crystal violet (CV) under UV and visible light irradiation. The CdS-incorporated porous WS2 hybrid demonstrated high photocatalytic activity for degradation of CV pollutant compared to pure CdS nanoparticles and porous WS2 sheets. This result implies that the CdS-incorporated porous WS2 promoted more electron-hole pair transformation under UV and visible light irradiation. This significant enhancement of photocatalytic efficiency of CdS-incorporated porous WS2 photocatalyst under visible light can be ascribed to the presence of CdS nanospheres on the meshed-like WS2 sheets which potentially improves absorption in the visible range enabled by surface plasmon resonance effect of CdS nanospheres. The photostability and reusability of the CdS-porous WS2 were examined through recycling experiments.  相似文献   
10.
I–III–VI multinary semiconductors, which have low toxicity, are attracting much attention as quantum dot (QD) materials for replacing conventional binary semiconductors that contain highly toxic heavy metals, Cd and Pb. Recently, the inherent design flexibility of multinary QDs has also been attracting attention, and optoelectronic property control has been demonstrated in many ways. Besides size control, the electronic and optical properties of multinary QDs can be changed by tuning the chemical composition with various methods including alloying with other semiconductors and deviation from stoichiometry. Due to significant progress in synthetic methods, the quality of such multinary QDs has been improved to a level similar to that of Cd-based binary QDs. Specifically, increased photoluminescence quantum yield and recently narrowed linewidth have led to new application fields for multinary QDs. In this review, a historical overview of the solution-phase synthesis of I–III–VI QDs is provided and the development of strategies for better control of optoelectronic properties, i.e., electronic structures, energy gap, optical absorption profiles, and photoluminescence feature, is discussed. In addition, applications of these QDs to luminescent devices and light energy conversion systems are described. The performance of prepared devices can be improved by controlling the optical properties and electronic structures of QDs by changing their size and composition. Clarification of the unique features of I–III–VI QDs in detail will be the base for further development of novel applications by utilizing the complexity of multinary QDs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号