首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   1篇
化学   34篇
物理学   2篇
  2024年   1篇
  2022年   1篇
  2021年   4篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2015年   2篇
  2013年   2篇
  2012年   4篇
  2010年   2篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2004年   3篇
  2003年   2篇
  2002年   2篇
  1997年   1篇
  1992年   1篇
  1988年   1篇
  1987年   1篇
排序方式: 共有36条查询结果,搜索用时 15 毫秒
1.
The review considers problems related to the formation, in the living organism, of nitric oxide, a versatile and vitally important regulator of cell metabolism. The pathways of formation of endogenous nitric oxide from L-arginine are discussed and the main approaches to increasing the NO concentration by introducing various types of exogenous nitric oxide donors into the organism and chemical and biological characteristics of these donors are considered. Primary attention is devoted to the known drugs that were shown to release NO under hydrolytic, oxidative, or reductive conditions. The solution of problems related to the elucidation of the mechanisms of drug action requires that the formation of nitric oxide be taken into account.  相似文献   
2.
Long sought after [4+2] cyclases have sprouted up in numerous biosynthetic pathways in recent years, raising hopes for biocatalytic solutions to cycloaddition catalysis, an important problem in chemical synthesis. In a few cases, detailed pictures of the inner workings of these catalysts have emerged, but intense efforts to gain deeper understanding are underway by means of crystallography and computational modelling. This Minireview aims to shed light on the catalytic strategies that this highly diverse family of enzymes employs to accelerate and direct the course of [4+2] cycloadditions with reference to small-molecule catalysts and designer enzymes. These catalytic strategies include oxidative or reductive triggers and lid-like movements of enzyme domains. A precise understanding of natural cycloaddition catalysts will be instrumental for customizing them for various synthetic applications.  相似文献   
3.
Fungal meroterpenoids are a diverse group of hybrid natural products with impressive structural complexity and high potential as drug candidates. In this work, we evaluate the promiscuity of the early structure diversity-generating step in fungal meroterpenoid biosynthetic pathways: the multibond-forming polyene cyclizations catalyzed by the yet poorly understood family of fungal meroterpenoid cyclases. In total, 12 unnatural meroterpenoids were accessed chemoenzymatically using synthetic substrates. Their complex structures were determined by 2D NMR studies as well as crystalline-sponge-based X-ray diffraction analyses. The results obtained revealed a high degree of enzyme promiscuity and experimental results which together with quantum chemical calculations provided a deeper insight into the catalytic activity of this new family of non-canonical, terpene cyclases. The knowledge obtained paves the way to design and engineer artificial pathways towards second generation meroterpenoids with valuable bioactivities based on combinatorial biosynthetic strategies.  相似文献   
4.
Soluble guanylate cyclase(sGC) is a critical heme-containing enzyme involved in NO signaling.The dimerization of sGC subunits is necessary for its bioactivity and its mechanism is a striking and an indistinct issue.The roles of heme domain cysteines of the sGC on the dimerization and heme binding were investigated herein.The site-directed mutations of three conserved cysteines(C78A,C122A and C174S) were studied systematically and the three mutants were characterized by gel filtration analysis,UV-vis spectroscopy and heme transfer examination.Cys78 was involved in heme binding but not referred to the dimerization,while Cys174 was demonstrated to be involved in the homodimerization.These results provide new insights into the cysteine-related dimerization regulation of sGC.  相似文献   
5.
The oxidosqualene cyclases (EC 5.4.99‐) constitute a family of enzymes that catalyze diverse cyclization/rearrangement reactions of (3S)‐2,3‐oxidosqualene into a distinct array of sterols and triterpenes. The relationship between the cyclization mechanism and the enzymatic structure is extremely complex and compelling. This review covers the historical achievements of biomimetic studies and current progress in structural biology, molecular genetics, and bioinformatics studies to elucidate the mechanistic and structure–function relationships of the Saccharomyces cerevisiae oxidosqualene‐lanosterol cyclase‐catalyzed cyclization/rearrangement reaction. © 2008 The Japan Chemical Journal Forum and Wiley Periodicals, Inc. Chem Rec 8: 302–325; 2008: Published online in Wiley InterScience ( www.interscience.wiley.com ) DOI 10.1002/tcr.20157  相似文献   
6.
Plasma membranes prepared from pig liver incubated with insulin (50—300 μU/ml) resulted in the release of at least two insulin chemical mediators. They appeared to modulate the activity of adenylate cyclase in liver plasma membrances of pig. One of them was fraction 1 of insulin mediator (M. W. about 3700—4000 dalton) which markedly stimulated the activity of the enzyme, the other was fraction 2 of insulin mediator (M. W. about 1000 dalton) which inhibited the enzyme activity. The results showed that the inhibitor of fraction 2 generated was significantly higher than that of fraction 1 when the membranes were incubated with insulin of low concentration (50—100 μU/ml). On the other hand, the generation of stimulator of fraction 1 from plasma membranes incubated with insulin of high concentration (200 μU/ml) was higher than that of fraction 2. So the ratio of yield between two mediators produced from the membranes was dependent on the concentration of insulin added. The results also showed that the  相似文献   
7.
The binding of heat stable enterotoxin (STa) secreted by enterotoxigenic Escherichia coli (ETEC) to the extracellular domain of guanylyl cyclase c (ECDGC-C) causes activation of a signaling cascade, which ultimately results in watery diarrhea. We carried out this study with the objective of finding ligands that would interfere with the binding of STa on ECDGC-C. With this view in mind, we tested the biological activity of a alkaloid rich fraction of Holarrhena pubescens against ETEC under in vitro conditions. Since this fraction showed significant antibacterial activity against ETEC, we decided to test the screen binding affinity of nine compounds of steroidal alkaloid type from Holarrhena pubescens against extracellular domain (ECD) by molecular docking and identified three compounds with significant binding energy. Molecular dynamics simulations were performed for all the three lead compounds to establish the stability of their interaction with the target protein. Pharmacokinetics and toxicity profiling of these leads demonstrated that they possessed good drug-like properties. Furthermore, the ability of these leads to inhibit the binding of STa to ECD was evaluated. This was first done by identifying amino acid residues of ECDGC-C binding to STa by protein–protein docking. The results were matched with our molecular docking results. We report here that holadysenterine, one of the lead compounds that showed a strong affinity for the amino acid residues on ECDGC-C, also binds to STa. This suggests that holadysenterine has the potential to inhibit binding of STa on ECD and can be considered for future study, involving its validation through in vitro assays and animal model studies.  相似文献   
8.
Linaclotide and its D-enantiomer were obtained through Fmoc solid phase peptide synthesis method and co-crystalized through racemic crystallization. The crystal structure showed that linaclotide has a tight, three-beta turns structure immobilized by three pairs of disulfide bonds.  相似文献   
9.
A targeted metabologenomic method was developed to selectively discover terminal oxazole-bearing natural products from bacteria. For this, genes encoding oxazole cyclase, a key enzyme in terminal oxazole biosynthesis, were chosen as the genomic signature to screen bacterial strains that may produce oxazole-bearing compounds. Sixteen strains were identified from the screening of a bacterial DNA library (1,000 strains) using oxazole cyclase gene-targeting polymerase chain reaction (PCR) primers. The PCR amplicon sequences were subjected to phylogenetic analysis and classified into nine clades. 1H−13C coupled-HSQC NMR spectra obtained from the culture extracts of the hit strains enabled the unequivocal detection of the target compounds, including five new oxazole compounds, based on the unique 1JCH values and chemical shifts of oxazole: lenzioxazole ( 1 ) possessing an unprecedented cyclopentane, permafroxazole ( 2 ) bearing a tetraene conjugated with carboxylic acid, tenebriazine ( 3 ) incorporating two modified amino acids, and methyl-oxazolomycins A and B ( 4 and 5 ). Tenebriazine displayed inhibitory activity against pathogenic fungi, whereas methyl-oxazolomycins A and B ( 4 and 5 ) selectively showed anti-proliferative activity against estrogen receptor-positive breast cancer cells. This metabologenomic method enables the logical and efficient discovery of new microbial natural products with a target structural motif without the need for isotopic labeling.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号