首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
化学   5篇
  2019年   1篇
  2017年   4篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
Transitional metals are widely used as co‐catalysts boosting photocatalytic H2 production. However, metal‐based co‐catalysts suffer from high cost, limited abundance and detrimental environment impact. To date, metal‐free co‐catalyst is rarely reported. Here we for the first time utilized density functional calculations to guide the application of phosphorene as a high‐efficiency metal‐free co‐catalyst for CdS, Zn0.8Cd0.2S or ZnS. Particularly, phosphorene modified CdS shows a high apparent quantum yield of 34.7 % at 420 nm. This outstanding activity arises from the strong electronic coupling between phosphorene and CdS, as well as the favorable band structure, high charge mobility and massive active sites of phosphorene, supported by computations and advanced characterizations, for example, synchrotron‐based X‐ray absorption near edge spectroscopy. This work brings new opportunities to prepare highly‐active, cheap and green photocatalysts.  相似文献   
2.
Two‐dimensional materials have allowed for great advances in the biosensors field and to obtain sophisticated, smart, and miniaturized devices. In this work, we optimized a highly sensitive and selective phenol biosensor using 2D pnictogens (phosphorene, arsenene, antimonene, and bismuthene) as sensing platforms. Exfoliated pnictogen were obtained by the shear‐force method, undergoing delamination and downsizing to thin nanosheets. Interestingly, compared with the other tested elements, antimonene exhibited the highest degree of exfoliation and the lowest oxidation‐to‐bulk ratio, to which we attribute its enhanced performance in the phenol biosensor system reported here. The proposed design represents the first biosensor approach developed using exfoliated pnictogens beyond phosphorene.  相似文献   
3.
4.
Among 2D materials that recently have attracted enormous interest, black phosphorus (BP) is gaining a rising popularity due to its tunable band‐gap structure, which is strongly correlated to the thickness and can enable its use in optoelectronic and electronic applications. It is therefore important to provide a facile and scalable methodology to prepare single or few‐layer BP nanosheets. We propose herein a simple and fast top‐down method to exfoliate a BP crystal into nanosheets of reduced thickness by using electrochemistry. The application of an anodic potential to the crystal in an acidic aqueous solution allows control over the exfoliation efficiency and quality of the nanosheets produced. X‐ray photoelectron spectroscopy (XPS), Raman spectroscopy, and scanning transmission electron microscopy (STEM) have been applied to fully characterize the exfoliated material, which presented significantly reduced layer thickness compared to the starting bulk material.  相似文献   
5.
Black phosphorus was compressed at room temperature across the A17, A7 and simple‐cubic phases up to 30 GPa, using a diamond anvil cell and He as pressure transmitting medium. Synchrotron X‐ray diffraction showed the persistence of two previously unreported peaks related to the A7 structure in the pressure range of the simple‐cubic phase. The Rietveld refinement of the data demonstrates the occurrence of a two‐step mechanism for the A7 to simple‐cubic phase transition, indicating the existence of an intermediate pseudo simple‐cubic structure. From a chemical point of view this study represents a deep insight on the mechanism of interlayer bond formation during the transformation from the layered A7 to the non‐layered simple‐cubic phase of phosphorus, opening new perspectives for the design, synthesis and stabilization of phosphorene‐based systems. As superconductivity is concerned, a new experimental evidence to explain the anomalous pressure behavior of Tc in phosphorus below 30 GPa is provided.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号