首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
化学   1篇
力学   3篇
数学   8篇
物理学   2篇
  2023年   1篇
  2015年   1篇
  2014年   1篇
  2010年   1篇
  2009年   3篇
  2008年   6篇
  1993年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
The paper presents the transportation of viscoelastic fluid with fractional Maxwell model by peristalsis through a channel under long wavelength and low Reynolds number approximations. The propagation of wall of channel is taken as sinusoidal wave propagation (contraction and relaxation). Homotopy perturbation method (HPM) and Adomian decomposition method (ADM) are used to obtain the analytical approximate solutions of the problem. The expressions of axial velocity, volume flow rate and pressure gradient are obtained. The effects of fractional parameters (α), relaxation time (λ1) and amplitude (?) on the pressure difference and friction force across one wavelength are calculated numerically for different particular cases and depicted through graphs.  相似文献   
2.
《印度化学会志》2023,100(3):100935
The educational value of nanofluids in several industrial and biological sectors, particularly in fluid movement systems known as peristalsis, has piqued researchers' interest in studying the peristaltic movement of nanofluids. Additionally, nanoparticles have crucial roles in many engineering and manufacturing processes, including those involving heat exchangers, cooling systems, boilers, MEMS, chemical engineering, laser diode arrays, and cool automotive engines. Various studies have been conducted on this subject. This is done by looking at how migratory gyrotactic microorganisms migrate through an artery that is anisotropically narrowing in a blood-based nanofluid that is non-Newtonian. To comprehend, the Powell-Eyring fluid model is used how the blood's rheology differs from that of a Newtonian fluid. Both Newtonian fluid characteristics and non-Newtonian traits can be seen in this fluid pattern. Equations for continuity, temperature, motile microbes, momentum, and concentration are used to create the mathematical formulation. The series solutions, which are produced using perturbation theory solutions are discussed using graphs for all dominant parameters. Discussion also includes the distribution of temperature, velocity, and swimming microorganisms. Additionally, the effects of wall shear stress, the Nusselt and Sherwood numbers, as well as the phenomena of trapping, are all examined in detail and shown in the graphs. Entropy generation analyses have also been undertaken. The investigation also reveals a crucial behaviour in the use of the heart-lung engine for extracorporeal blood circulation in medicine that may have an impact on the damage of red blood cells as a result of the large fluctuation in wall shear stress. When liquids are transported using arthro pumps and roller pumps in living organs, the results are likewise of significant use. The results are very helpful for executing particle movements in cardiac surgery and may be applicable to the fluid peristaltic pump used in haemodialysis.  相似文献   
3.
The problem of peristaltic flow of a Newtonian fluid with heat transfer in a vertical asymmetric channel through porous medium is studied under long-wavelength and low-Reynolds number assumptions. The flow is examined in a wave frame of reference moving with the velocity of the wave. The channel asymmetry is produced by choosing the peristaltic wave train on the walls to have different amplitudes and phase. The analytical solution has been obtained in the form of temperature from which an axial velocity, stream function and pressure gradient have been derived. The effects of permeability parameter, Grashof number, heat source/sink parameter, phase difference, varying channel width and wave amplitudes on the pressure gradient, velocity, pressure drop, the phenomenon of trapping and shear stress are discussed numerically and explained graphically.  相似文献   
4.
The present study investigates the effects of heat and mass transfer on peristaltic transport in a porous space with compliant walls. The fluid is electrically conducting in the presence of a uniform magnetic field. Analytic solution is carried out under long-wavelength and low-Reynolds number approximations. The expressions for stream function, temperature, concentration and heat transfer coefficient are obtained. Numerical results are graphically discussed for various values of physical parameters of interest.  相似文献   
5.
In order to determine the characteristics of the peristaltic transport of shear thinning non-Newtonian materials, the motion of a third-order fluid in a planar channel having walls that are transversely displaced by an infinite, harmonic traveling wave of large wavelength and negligibly small Reynolds number was analyzed using a perturbation expansion in terms of a variant of the Deborah number. Within the range of validity of this analysis, we found the pumping rate of a shear-thinning fluid is less than that for a Newtonian fluid having a shear viscosity the same as the lower-limiting viscosity of the nonNewtonian material. Also, the space of variables for which trapping of a bolus of fluid occurs is reduced for the shear-thinning fluid investigated here.  相似文献   
6.
In this paper, peristaltic motion of micropolar fluid in a circular cylindrical flexible tube with viscoelastic or elastic wall properties has been considered. A finite difference scheme is developed to solve the governing equations of motion resulting from a perturbation technique for small values of amplitude ratio. The time mean axial velocity profiles are presented for the case of free pumping and analysed to observe the influence of wall properties for various values of micropolar fluid parameters. In the case of viscoelastic wall, the effect of viscous damping on mean flow reversal at the boundary is seen.  相似文献   
7.
The peristaltic flow of a Maxwell fluid in an asymmetric channel is studied. Asymmetry in the flow is induced by taking peristaltic wave train of different amplitudes and phase. The viscoelasticity of the fluid is induced in the momentum equation. An analytic solution is obtained through a series of the wave number. The leading velocity term denotes the Newtonian result. The first and second order terms are the viscoelastic contribution to the flow. Expressions for stream function and longitudinal pressure gradient are obtained analytically. Numerical computations have been performed for the pressure rise per wavelength and discussed.  相似文献   
8.
This paper looks at the influence of an endoscope on the peristaltic flow of a Jeffrey fluid through tubes. The considered fluid is incompressible and electrically conducting. The governing partial differential equations are modeled. Exact analytic solutions for velocity components and pressure gradient are established under long wavelength assumption. Numerical calculations are carried out for the pressure rise and frictional forces. The features of the flow characteristics are analyzed by plotting graphs and discussed in detail.  相似文献   
9.
Recent development in biomedical engineering has enabled the use of the magnetic nanoparticles in modern drug delivery systems with great utility. Nanofluids composed of magnetic nanoparticles have the characteristics to be manipulated by external magnetic field and are used to guide the particles up the bloodstream to a tumor with magnets. In this study we examine the mixed convective peristaltic transport of copper–water nanofluid under the influence of constant applied magnetic field. Nanofluid is considered in an asymmetric channel. Aside from the effect of applied magnetic field on the mechanics of nanofluid, its side effects i.e. the Ohmic heating and Hall effects are also taken into consideration. Heat transfer analysis is performed in presence of viscous dissipation and heat generation/absorption. Mathematical modeling is carried out using the lubrication analysis. Resulting system of equations is numerically solved. Impact of embedded parameters on the velocity, pressure gradient, streamlines and temperature of nanofluid is examined. Effects of applied magnetic field in presence and absence of Hall effects are studied and compared. Results depict that addition of copper nanoparticles reduces the velocity and temperature of fluid. Heat transfer rate at the boundary enhances by increasing the nanoparticles volume fraction. Increase in the strength of applied magnetic field tends to decrease/increase the velocity/temperature of nanofluid. Further presence of Hall effects reduces the variations brought in the state of fluid when strength of applied magnetic field is increased.  相似文献   
10.
The peristaltic flow of a Jeffrey fluid in an asymmetric channel is studied under long wavelength and low Reynolds number assumptions. The fluid is electrically conducting by a transverse magnetic field. The channel asymmetry is produced by choosing the peristaltic wave train on the walls to have different amplitudes and phase. The flow is investigated in a wave frame of reference moving with the velocity of the wave. The expressions for stream function, axial velocity and axial pressure gradient have been obtained. The effects of various emerging parameters on the flow characteristics are shown and discussed with the help of graphs. The pumping characteristics, axial pressure gradient and trapping phenomenon have been studied. Comparison of various wave forms (namely sinusoidal, triangular, square and trapezoidal) on the flow is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号