首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81篇
  免费   1篇
  国内免费   8篇
化学   85篇
晶体学   1篇
物理学   4篇
  2024年   1篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2013年   6篇
  2012年   8篇
  2011年   4篇
  2010年   3篇
  2009年   4篇
  2008年   3篇
  2007年   6篇
  2006年   18篇
  2005年   5篇
  2004年   6篇
  2003年   5篇
  2002年   2篇
  2001年   3篇
  2000年   2篇
  1999年   2篇
  1997年   1篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1989年   2篇
排序方式: 共有90条查询结果,搜索用时 31 毫秒
1.
Summary. The solid LiClO4-mediated one-pot reaction of aldehydes with secondary amines and C nucleophiles afforded the corresponding aminoalkylation products in high yields. Unlike the previous reported procedure, the aminoalkylation of aldehyde was achieved in the presence of only 0.5 equivalents of solid lithium perchlorate in dichloromethane as the solvent with good to high yields at room temperature.  相似文献   
2.
The perchlorate anion (ClO 4 ) is an anthropogenic contaminant of increasing concern in water supplies, and has been shown to disrupt thyroid activity. Most perchlorate analyses are currently carried out by ion chromatography (IC) with suppressed conductivity detection (SCD). While this procedure has been demonstrated to provide acceptable performance for analysis of water samples, the determination of perchlorate in high-conductivity aqueous extracts of plant or animal material is not readily accomplished by IC-SCD unless lengthy cleanup protocols are applied. With the addition of electrospray ionization mass spectrometry (ESI-MS) to IC, it was hypothesized that the interference imposed by various ionic species could be significantly reduced without the need for purification; however, the analysis of perchlorate in relatively unpurified extracts of biologically derived homogenates by IC-ESI-MS has not previously been described in the literature. The research presented here represents a comparison of the capabilities of IC-SCD and IC-ESI-MS to detect perchlorate in reagent water and in crude extracts of perchlorate-exposed fish (threespine stickleback, Gasterosteus aculeatus). ESI-MS was found to compare favorably to SCD for the detection of perchlorate in deionized water, and to exceed SCD performance in perchlorate analysis of fish-derived extracts.  相似文献   
3.
R. Stahl 《Chromatographia》1993,37(5-6):300-302
Summary The determination of chloride and perchlorate by non-suppressed ion chromatography in aqueous process solutions containing a high sulfate background is described. The method is reliable and fast. The sensitivity for perchlorate is lower than for other anions like nitrate, nitrite and chlorate. The detection limits are about 0.3 g/ml with linear calibration curves within a concentration range from 1 to 50 g/ml.  相似文献   
4.
Colourless single crystals of the caffeine adduct of mercurous perchlorate dihydrate, [Hg2(Caf)2](ClO4)2(H2O)2, were grown from aqueous solutions of mercurous perchlorate and caffeine by isothermal evaporation at ambient temperature. The crystal structure (monoclinic, P21/n, Z = 4, a = 1628.0(2), b = 780.4(1), c = 2229.6(3) pm, β = 99.84(1)°, R1(all data) = 0.0894) contains [trans‐Caf‐Hg‐Hg‐Caf]2+ cations with a Hg‐Hg distance of 250.88(6) pm, Hg‐N (bond) distances of 214.4(6) and 215.1(6) pm and Hg‐Hg‐N angles of 176.9(2) and 165.1(2)°, respectively. These cations are attached via weak Hg‐O contacts to dimers which are further arranged to leave large channels into which one crystal water molecule is included. The second water molecule and the two perchlorate anions are weakly attracted to one Hg atom.  相似文献   
5.
The synthesis and characterization of a new tetra (triphenylphosphonium) p-tert-butylcalix[4]arene 2 is presented. Its interactions with anions were studied by 1H and 31P NMR and UV absorption spectrophotometry, showing the biggest interaction with ClO4 , I and SCN. Anion selectivity in ion-selective PVC-membrane electrodes (ISEs) plasticized with o-NPOE containing ionophore 2 was also investigated. Compound 2 shows a potentiometric response for various anions with the following selectivity pattern: ClO4 > SCN > I > Cr2O7 2 ?  > NO3 > Br > Cl.  相似文献   
6.
张萍  史亚利  王亚 《分析化学》2007,35(1):131-134
建立了离子色谱-质谱联用技术测定活性污泥样品中高氯酸盐的分析方法。以高容量、强亲水性的IonPacAS20(2mm)阴离子交换柱为分析柱,EGC在线产生等浓度KOH为淋洗液,淋洗液经抑制成水后将样品带入质谱检测。ESI-MS-MS以多元反应监测模式监控100.8/84.9、98.8/66.9、100.8/68.9和98.8/82.9离子对,以98.8/82.9离子对的峰面积进行定量。该方法对高氯酸盐的检出限(S/N=3)为0.01μg/L,高氯酸盐在0.05~100μg/L浓度范围内具有良好的线性,线性相关系数r=0.9988。0.2μg/L的标准溶液重复进样9次,高氯酸盐峰面积的相对标准偏差(RSD)为2.3%。运用该方法测定采自不同地区的活性污泥样品中的高氯酸盐,并对样品加标回收,得回收率在88.5%~102.2%之间。  相似文献   
7.
Perchlorate ion (ClO4) is an environmental contaminant of growing concern due to its potential human health effects, impact on aquatic and land animals, and widespread occurrence throughout the United States. The determination of perchlorate cannot normally be carried out in the field. As such, water samples for perchlorate analysis are often shipped to a central laboratory, where they may be stored for a significant period before analysis. The stability of perchlorate ion in various types of commonly encountered water samples has not been generally examined—the effect of such storage is thus not known. In the present study, the long-term stability of perchlorate ion in deionized water, tap water, ground water, and surface water was examined. Sample sets containing approximately 1000, 100, 1.0, and 0.5 μg l−1 perchlorate ion in deionized water and also in local tap water were formulated. These samples were analyzed by ion chromatography for perchlorate ion concentration against freshly prepared standards every 24 h for the first 7 days, biweekly for the next 4 weeks, and periodically after that for a total of 400 or 610 days for the two lowest concentrations and a total of 428 or 638 days for the high concentrations. Ground and surface water samples containing perchlorate were collected, held and analyzed for perchlorate concentration periodically over at least 360 days. All samples except for the surface water samples were found to be stable for the duration of the study, allowing for holding times of at least 300 days for ground water samples and at least 90 days for surface water samples.  相似文献   
8.
许佳丽  李原芳 《应用化学》2010,27(8):935-938
利用光散射光谱法研究了高氯酸根和阳离子表面活性剂十六烷基三甲基溴化铵(CTAB)的作用。 在酸性条件下,高氯酸根和CTAB通过静电作用形成离子缔合物,导致体系光散射强度增强。 环境水样中的常见阴离子如Cl-、Br-、ClO3-、NO3-和PO43-等与CTAB单独作用时其光散射强度很弱,而当它们与高氯酸根同时存在时,由于协同作用使体系散射强度发生改变。 以Cl-为例,借助动态光散射测定,初步探讨了体系协同作用的机理。  相似文献   
9.
A theoretical treatment of potentiometric data is applied to calculate coextraction constants (KIA) for three potassium salts from water into a liquid nitrobenzene phase. The experiment involves treating nitrobenzene as a membrane and contacting it with two aqueous solutions of different ion activities. In the presence of either a cation or anion exchanger, the ratio of activities of ions in the two aqueous phases gives rise to a potential difference across the membrane that depends upon the nature and charge of the counter ion of the ion-exchanger in excess. Here, the cation exchanger was chosen to be potassium tetrakis(4-chlorophenyl)borate (KTpClPB) and the anion exchanger was tetradodecylammonium chloride (TDDACl). TDDACl was incrementally added to the nitrobenzene phase containing a fixed concentration of KTpClPB, and the corresponding emf was recorded as a function of concentration of TDDACl. The membrane changes from one with cation exchanger properties (excess KTpClPB) to one with anion exchanger properties (excess TDDACl). The potential difference and shape of the titration curve can be predicted by theory based on the phase boundary potential model. Log(KIA) values calculated for KCl, KNO3 and KClO4 in nitrobenzene were found as: −10.53 (± 0.09), −8.16 (± 0.05) and −5.63 (± 0.03) respectively, in accordance with the Hofmeister series of lipophilicity, and similar to those observed in PVC membranes containing other plasticizers. The method presented here offers the advantage over other methods to calculate KIA, in that it is relatively experimentally simple without compromising the accuracy of the calculated coextraction constants. The ability to titrate directly into the liquid membrane phase affords a higher precision compared to the preparation of a series of PVC/plasticizer membranes with different compositions.  相似文献   
10.
《Electroanalysis》2018,30(5):901-909
We report in this work the development of a novel capacitance electrochemical sensors based on silicon nitride substrate (Si3N4) chemically modified with a structure of Cobalt phthalocyanine, C,C,C,C‐tetracarboxylic acid‐Polyacrylamide (Co(II)Pc‐PAA). This sensitive layer was tested with and without magnetic nanoparticles (MNP) for perchlorate ( ) detection. The developed chemical sensor with Si3N4/APTES‐MNP/Co(II)Pc‐PAA structure has shown a better performance when compared to the other structure based on Si3N4/Co(II)Pc‐PAA. Contact angle measurements (CAM) and atomic force microscopy (AFM) characterizations have been performed to characterize the functionalization of the chemical sensors surface. Under the optimized structure of the chemical sensor, electrochemical measurements were carried out using Mott‐Schottky analysis for detection within the large range of 10−10 to 10−4 M with a very low detection limit of 2×10−10 M. The chemical sensor has demonstrated a high selectivity toward when compared to other interfering anions such as Cl, SO42−, and CO32−. The present capacitive chemical sensor is very promising for sensitive and rapid detection of for environmental applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号