首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   0篇
化学   19篇
  2020年   3篇
  2019年   4篇
  2018年   1篇
  2017年   4篇
  2016年   4篇
  2014年   1篇
  2007年   1篇
  2006年   1篇
排序方式: 共有19条查询结果,搜索用时 15 毫秒
1.
2.
3.
Mobile proton‐containing solutes can be detected by MRI by the chemical exchange saturation transfer (CEST) method. CEST sensitivity is dramatically enhanced by using, as exchanging protons, the water molecules confined inside liposomes, shifted by a paramagnetic shift reagent. The chemical shift of the intraliposomal water resonance (δIL) is affected by the overall shape of the supramolecular system. δIL of a spherical LipoCEST acts as a sensitive reporter of the distribution of streptavidin proteins anchored at the liposome surface by biotinylated phospholipids. This finding prompted the design of a MMP‐2 responsive LipoCEST agent as the streptavidin moieties can be released from the liposome surfaces when a properly tailored enzyme‐cleavable peptide is inserted on the phospholipids before the terminal biotin residues. δIL reports on the overall changes in the supramolecular architecture associated to the cleavage carried out by MMP‐2.  相似文献   
4.
5.
An approach to the de novo structure prediction of proteins is described that relies on surface accessibility data from NMR paramagnetic relaxation enhancements by a soluble paramagnetic compound (sPRE). This method exploits the distance‐to‐surface information encoded in the sPRE data in the chemical shift‐based CS‐Rosetta de novo structure prediction framework to generate reliable structural models. For several proteins, it is demonstrated that surface accessibility data is an excellent measure of the correct protein fold in the early stages of the computational folding algorithm and significantly improves accuracy and convergence of the standard Rosetta structure prediction approach.  相似文献   
6.
Solid-state NMR (ssNMR) is applicable to high molecular-weight (MW) protein assemblies in a non-amorphous precipitate. The technique yields atomic resolution structural information on both soluble and insoluble particles without limitations of MW or requirement of crystals. Herein, we propose and demonstrate an approach that yields the structure of protein–RNA complexes (RNP) solely from ssNMR data. Instead of using low-sensitivity magnetization transfer steps between heteronuclei of the protein and the RNA, we measure paramagnetic relaxation enhancement effects elicited on the RNA by a paramagnetic tag coupled to the protein. We demonstrate that this data, together with chemical-shift-perturbation data, yields an accurate structure of an RNP complex, starting from the bound structures of its components. The possibility of characterizing protein–RNA interactions by ssNMR may enable applications to large RNP complexes, whose structures are not accessible by other methods.  相似文献   
7.
NMR spectroscopy is an indispensable technique for the determination of the chemical identity and structure of small molecules. The method is especially recognized for its robustness and intrinsically quantitative nature, and has manifested itself as a key analytical platform for diverse fields of application, ranging from chemical synthesis to metabolomics. Unfortunately, the slow recovery of nuclear spin polarization by spin‐lattice (T1) relaxation causes most experimental time to be lost on idle waiting. Furthermore, truly quantitative NMR (qNMR) spectroscopy requires waiting times of 5‐times the longest T1 in the sample, making qNMR spectroscopy slow and inefficient. We demonstrate here that co‐solute paramagnetic relaxation can mitigate these two problems simultaneously. The addition of a small amount of paramagnetic gadolinium chelate, available in the form of commercial contrast‐agent solutions, enables cheap, quantitative, and efficient high‐throughput mixture analysis.  相似文献   
8.
A protein can be in different conformations when fulfilling its function. Yet depiction of protein structural ensembles remains difficult. Here we show that the accurate measurement of solvent paramagnetic relaxation enhancement (sPRE) in the presence of an inert paramagnetic cosolute allows the assessment of protein dynamics. Demonstrated with two multi‐domain proteins, we present a method to characterize protein microsecond–millisecond dynamics based on the analysis of the sPRE. Provided with the known structures of a protein, our method uncovers an ensemble of structures that fully accounts for the observed sPRE. In conjunction with molecular dynamics simulations, our method can identify protein alternative conformation that has only been theorized before. Together, our method expands the application of sPRE beyond structural characterization of rigid proteins and complements the established PRE NMR technique.  相似文献   
9.
A detailed analysis of paramagnetic NMR shifts in a series of isostructural lanthanide complexes relavant to PARASHIFT contrast agents reveals unexpected trends in the magnetic susceptibility anisotropy that cannot be explained by the commonly used Bleaney's theory. Ab initio calculations reveal that the primary assumption of Bleaney's theory—that thermal energy is larger than the ligand field splitting—does not hold for the lanthanide complexes in question, and likely for a large fraction of lanthanide complexes in general. This makes the orientation of the magnetic susceptibility tensor differ significantly between complexes of different lanthanides with the same ligand: one of the most popular assumptions about isostructural lanthanide series is wrong.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号