首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   84篇
  免费   29篇
  国内免费   8篇
化学   75篇
晶体学   7篇
数学   1篇
物理学   38篇
  2024年   1篇
  2023年   3篇
  2022年   5篇
  2021年   6篇
  2020年   7篇
  2019年   2篇
  2018年   7篇
  2017年   9篇
  2016年   11篇
  2015年   7篇
  2014年   11篇
  2013年   3篇
  2012年   4篇
  2011年   8篇
  2010年   5篇
  2009年   9篇
  2008年   6篇
  2007年   4篇
  2006年   2篇
  2005年   4篇
  2004年   1篇
  2003年   6篇
排序方式: 共有121条查询结果,搜索用时 15 毫秒
1.
To improve the reproducibility, stability, and sensitivity of bismuth film electrode (BiFE), we studied the performances of a mixed coating of two cation‐exchange polymers, Nafion (NA) and poly(sodium 4‐styrenesulfonate) (PSS), modified glassy carbon BiFE (GC/NA‐PSS/BiFE). The characteristics of GC/NA‐PSS/BiFE were investigated by scanning electron microscopy and cyclic voltammetry. Various parameters were studied in terms of their effect on the anodic stripping voltammetry (ASV) signals. Under optimized conditions, the limits of detection were 71 ng L?1 for Cd(II) and 93 ng L?1 for Pb(II) with a 10 min preconcentration. The results exhibited that GC/NA‐PSS/BiFE can be a reproducible and robust tool for monitor of trace metals by ASV rapidly and environmentally friendly, even in the presence of surface‐active compounds.  相似文献   
2.
The aim of this work has been to study the influence of modified hole‐extraction layers on the performance of organic solar cells (OSCs) based on blends of poly (3‐hexylthiophene) and [6,6]‐phenyl‐C61‐butyric acid methyl ester. The hole‐extraction layers consist of poly (3,4‐ethylene dioxythiophene):polystyrene sulfonic acid (PEDOT:PSS) doped with different concentrations of bromine. Compared with pristine OSC without adding bromine to the hole‐extraction layer, the bromine‐doped OSCs show a 49% increase in the power conversion efficiency (from 2.12 to 3.16%), which could be attributed to the increase of electrical and optical properties of PEDOT:PSS films after the addition of bromine. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 50: 125–128, 2012  相似文献   
3.
Impedance spectroscopy studies performed for intercalated multilayer structures of the type of a layered inorganic semiconductor (InSe)/conducting polymer (PEDOT:PSS) revealed low-frequency inductive response and the growth of dielectric permeability in megahertz region together with the decrease of dielectric loss angle down to one as a consequence of the conducting polymer intercalation into semiconducting layers. A model describing the unusual current-voltage characteristic is proposed.  相似文献   
4.
5.
CE can efficiently separate poly(3,4‐ethylenedioxythiophene)/poly(styrene sulfonic acid) (PEDOT/PSS) complexes and free PSS in dispersions and can be used to estimate the degree of PSS doping. We investigated the doping efficiency of PSS on PEDOT in dispersions using CE and its effect on the conductivity of the resulting PEDOT/PSS films. Results of this study indicate that dispersions containing 1:2.5–3 EDOT:PSS feed ratio (by weight) exhibiting 72–73% PSS doping generate highly processable and highly conductive films. Conductivity can be optimized by limiting the time of reaction to 12 h. At this point of the reaction, the PEDOT/PSS segments, appearing as broad band in the electropherogram, could still exist in an extended coil conformation favoring charge transport resulting in high conductivity. Above a threshold PEDOT length formed at reaction times longer than 12 h, the PEDOT/PSS complex, appearing as spikes in the electropherogram, most likely have undergone a conformational change to coiled core‐shell structure restricting charge transport resulting in low conductivity. The optimal conductivity (5.2 S/cm) of films from dispersions synthesized for 12 h is significantly higher than those from its commercial equivalent Clevios P and other reported values obtained under similar conditions without the addition of codopants.  相似文献   
6.
We report the fabrication of a microfluidic apparatus and the realization of a sensors based on PEDOT : PSS, a biocompatible semiconductor polymer used in substitution of standard electrodes for electrophysiological studies and for detection of nanopores in membrane. This gives the possibility to study the mechanisms of ions balance and molecular transport though cell membranes. In particular the apparatus is based on two chambers connected through an aperture in a PTFE sheet where lipid bilayer are formed using Montal‐Mueller method, and the pore‐forming proteins activity is detected by polymeric electrodes. This methodology could be applied to examine different membrane proteins for the purpose of biosensing, drug screening and nanopore technologies.  相似文献   
7.
Planar organic electrochemical transistors (OECTs) using PEDOT:PSS as the channel material and nanostructured carbon (nsC) as the gate electrode material and poly(sodium 4‐styrenesulfonate (PSSNa) gel as the electrolyte were fabricated on flexible polyethylene terephthalate (Mylar®) substrates. The nsC was deposited at room‐temperature by supersonic cluster beam deposition (SCBD). Interestingly, the OECT acts as a hybrid supercapacitor (to give a device that we indicate as transcap). The energy storage ability of transcaps has been studied with two cell configurations: one featuring PEDOT:PSS as the positive electrode and nsC as the negative electrode and another configuration with reversed electrode polarity. Potentiostatic charge/discharge studies show that both supercapacitors show good performance in terms of voltage retention, in particular, when PEDOT:PSS is used as the positive electrode. Galvanostatic charge–discharge characteristics show typical symmetric triangular shape, indicating a nearly ideal capacitive behavior with a high columbic efficiency (close to 100%). © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 96–103  相似文献   
8.
In this communication, a porous stainless steel (PSS) tube was electrolessly plated into Pd–Ag membrane reactor which was used for separating hydrogen produced in an ethanol steam reforming reaction with the addition of oxygen, which has not been reported before. Palladium and silver were deposited on porous stainless steel tube via the sequential electroless plating procedure with an overall film thickness of 20 μm and Pd/Ag weight ratio of 78/22. Ethanol–water mixture (nwater/nethanol = 1 or 3) and oxygen (noxygen/nethanol = 0.2 or 0.7) were fed concurrently into the membrane reactor packed with MDC-3. The reaction temperatures were set at 593–723 K and the pressures 3–10 atm. The effect of oxygen addition plays a vital role on the ethanol steam reforming reaction, especially for the Pd–Ag membrane reactor in which a higher flux of hydrogen is required. If oxygen in the feed is not sufficient, it would be possible that steam reforming reaction prevails. Inversely, high O2 addition will shift the reaction scenario to be partial oxidation dominating, and selectivity of CO2 increases with increasing oxygen feed. At high pressure, autothermal reaction of ethanol would be easily reached.  相似文献   
9.
In this study, poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) zirconium(IV) monothiophosphate composite cation exchanger was prepared by sol–gel precipitation method. The presence of sulphur in the cation exchanger enhances affinity towards the heavy metal ions which can improve the selectivity of the material. The selectivity studies showed that the material is selective towards Pb(II) ions. To characterise the material, several physicochemical properties were also studied which includes X-ray, scanning electron microscopy and transmission electron microscopy studies. The ion-exchange behaviour of this cation exchanger was studied by using some of the selected properties like ion-exhange capacity for various metal ions, elution, effect of eluent concentration, thermal effect on ion-exchange capacity (IEC). The results of IEC and physicochemical properties revealed that the material is nanocomposite, crystalline, chemically, mechanically and thermally stable. The analytical ability of this cation exchanger was demonstrated in binary separation of Pb(II) ions from a mixture of other metal ions. The recovery is qualitative and the separations are reproducible.  相似文献   
10.
Highly conductive poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) films as transparent electrodes for organic light‐emitting diodes (OLEDs) are doped with a new solvent 1,3‐dimethyl‐2‐imidazolidinone (DMI) and are optimized using solvent post‐treatment. The DMI doped PEDOT:PSS films show significantly enhanced conductivities up to 812.1 S cm−1. The sheet resistance of the PEDOT:PSS films doped with DMI is further reduced by various solvent post‐treatment. The effect of solvent post‐treatment on DMI doped PEDOT:PSS films is investigated and is shown to reduce insulating PSS in the conductive films. The solvent posttreated PEDOT:PSS films are successfully employed as transparent electrodes in white OLEDs. It is shown that the efficiency of OLEDs with the optimized DMI doped PEDOT:PSS films is higher than that of reference OLEDs doped with a conventional solvent (ethylene glycol). The results present that the optimized PEDOT:PSS films with the new solvent of DMI can be a promising transparent electrode for low‐cost, efficient ITO‐free white OLEDs.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号