首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2419篇
  免费   211篇
  国内免费   134篇
化学   2377篇
晶体学   10篇
力学   28篇
综合类   8篇
数学   30篇
物理学   311篇
  2024年   5篇
  2023年   14篇
  2022年   37篇
  2021年   56篇
  2020年   63篇
  2019年   66篇
  2018年   70篇
  2017年   91篇
  2016年   120篇
  2015年   108篇
  2014年   119篇
  2013年   288篇
  2012年   116篇
  2011年   161篇
  2010年   140篇
  2009年   167篇
  2008年   198篇
  2007年   159篇
  2006年   161篇
  2005年   169篇
  2004年   147篇
  2003年   117篇
  2002年   85篇
  2001年   31篇
  2000年   17篇
  1999年   9篇
  1998年   15篇
  1997年   9篇
  1996年   9篇
  1995年   5篇
  1994年   5篇
  1993年   3篇
  1990年   2篇
  1987年   2篇
排序方式: 共有2764条查询结果,搜索用时 421 毫秒
1.
The microscopic Polymer Reference Interaction Site Model theory is employed to study, for the first time, the effective interactions, spatial organization, and miscibility of dilute spherical nanoparticles in non‐microphase separating, chemically heterogeneous, compositionally symmetric AB multiblock copolymer melts of varying monomer sequence or architecture. The dependence of nanoparticle wettability on copolymer sequence and chemistry results in interparticle potentials‐of‐mean force that are qualitatively different from homopolymers. An important prediction is the ability to improve nanoparticle dispersion via judicious choice of block length and monomer adsorption‐strengths which control both local surface segregation and chain connectivity induced packing constraints and frustration. The degree of dispersion also depends strongly on nanoparticle diameter relative to the block contour length. Small particles in copolymers with longer block lengths experience a more homopolymer‐like environment which renders them relatively insensitive to copolymer chemical heterogeneity and hinders dispersion. Larger particles (sufficiently larger than the monomer diameter) in copolymers of relatively short block lengths provide better dispersion than either a homopolymer or random copolymer. The theory also predicts a novel widening of the miscibility window for large particles upon increasing the overall molecular weight of copolymers composed of relatively long blocks. The influence of a positive chi‐parameter in the pure copolymer melt is briefly studied. Quantitative application to fullerenes in specific copolymers of experimental interest is performed, and miscibility predictions are made. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1098–1111  相似文献   
2.
A series of new poly(butylene succinate) (PBS)/layered silicate nanocomposites were prepared successfully by simple melt extrusion of PBS and organically modified layered silicates (OMLS). Three different types of OMLS were used for the preparation of nanocomposites: two functionalized ammonium salts modified montmorillonite and a phosphonium salt modified saponite. The structure of the nanocomposites in the nanometer scale was characterized with wide-angle X-ray diffraction and transmission electron microscopic observations. With three different types of layered silicates modified with three different types of surfactants, the effect of OMLS in nanocomposites was investigated by focusing on four major aspects: structural analysis, materials properties, melt rheological behavior, and biodegradability. Interestingly, all these nanocomposites exhibited concurrent improvements of material properties when compared with pure PBS. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 3160–3172, 2003  相似文献   
3.
Montmorillonite (MMT) was modified with the acidified cocamidopropyl betaine (CAB) and the resulting organo‐montmorillonite (O‐MMT) was dispersed in an epoxy/methyl tetrahydrophthalic anhydride system to form epoxy nanocomposites. The intercalation and exfoliation behavior of the epoxy nanocomposites were examined by X‐ray diffraction and transmission electron microscopy. The curing behavior and thermal property were investigated by in situ Fourier transform infrared spectroscopy and DSC, respectively. The results showed that MMT could be highly intercalated by acidified CAB, and O‐MMT could be easily dispersed in epoxy resin to form intercalated/exfoliated epoxy nanocomposites. When the O‐MMT loading was lower than 8 phr (relative to 100 phr resin), exfoliated nanocomposites were achieved. The glass‐transition temperatures (Tg's) of the exfoliated nanocomposite were 20 °C higher than that of the neat resin. At higher O‐MMT loading, partial exfoliation was achieved, and those samples possessed moderately higher Tg's as compared with the neat resin. O‐MMT showed an obviously catalytic nature toward the curing of epoxy resin. The curing rate of the epoxy compound increased with O‐MMT loading. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1192–1198, 2004  相似文献   
4.
The viscoelastic properties of binary blends of nitrile rubber (NBR) and isotactic polypropylene (PP) of different compositions have been calculated with mean‐field theories developed by Kerner. The phase morphology and geometry have been assumed, and experimental data for the component polymers over a wide temperature range have been used. Hashin's elastic–viscoelastic analogy principle is used in applying Kerner's theory of elastic systems for viscoelastic materials, namely, polymer blends. The two theoretical models used are the discrete particle model (which assumes one component as dispersed inclusions in the matrix of the other) and the polyaggregate model (in which no matrix phase but a cocontinuous structure of the two is postulated). A solution method for the coupled equations of the polyaggregate model, considering Poisson's ratio as a complex parameter, is deduced. The viscoelastic properties are determined in terms of the small‐strain dynamic storage modulus and loss tangent with a Rheovibron DDV viscoelastometer for the blends and the component polymers. Theoretical calculations are compared with the experimental small‐strain dynamic mechanical properties of the blends and their morphological characterizations. Predictions are also compared with the experimental mechanical properties of compatibilized and dynamically cured 70/30 PP/NBR blends. The results computed with the discrete particle model with PP as the matrix compare well with the experimental results for 30/70, 70/30, and 50/50 PP/NBR blends. For 70/30 and 50/50 blends, these predictions are supported by scanning electron microscopy (SEM) investigations. However, for 30/70 blends, the predictions are not in agreement with SEM results, which reveal a cocontinuous blend of the two. Predictions of the discrete particle model are poor with NBR as the matrix for all three volume fractions. A closer agreement of the predicted results for a 70/30 PP/NBR blend and the properties of a 1% maleic anhydride modified PP or 3% phenolic‐modified PP compatibilized 70/30 PP/NBR blend in the lower temperature zone has been observed. This may be explained by improved interfacial adhesion and stable phase morphology. A mixed‐cure dynamically vulcanized system gave a better agreement with the predictions with PP as the matrix than the peroxide, sulfur, and unvulcanized systems. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1417–1432, 2004  相似文献   
5.
A new method for the synthesis of exfoliated graphite and polyaniline (PANI)/graphite nanocomposites was developed. Exfoliated graphite nanosheets were prepared through the microwave irradiation and sonication of synthesized expandable graphite. The nanocomposites were fabricated via the in situ polymerization of the monomer at the presence of graphite nanosheets. The as-synthesized graphite nanosheets and PANI/graphite nanocomposite materials were characterized with Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, and thermogravimetric analysis (TGA). The conductivity of the PANI/graphite nanocomposites was dramatically increased over that of pure PANI. TGA indicated that the incorporation of graphite greatly improved the thermal stability of PANI. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1972–1978, 2004  相似文献   
6.
The thermophysical and mechanical properties of a nanocomposite material composed of amine‐cured diglycidyl ether of bisphenol A (DGEBA) reinforced with organomontmorillonite clay are reported. The storage modulus at 100 °C, which was above the glass‐transition temperature (Tg), increased approximately 350% with the addition of 10 wt % (6.0 vol %) of clay. Below the Tg, the storage modulus at 30 °C increased 50% relative to the value of unfilled epoxy. It was determined that the Tg linearly increased as a function of clay volume percent. The tensile modulus of epoxy at room temperature increased approximately 50% with the addition of 10 wt % of clay. The reinforcing effect of the organoclay nanoplatelets is discussed with respect to the Tandon–Weng and Halpin–Tsai models. A pseudoinclusion model is proposed to describe the behavior of randomly oriented, uniformly dispersed platelets in nanocomposite materials. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4391–4400, 2004  相似文献   
7.
In this work, preparation and properties of different nanoclays modified by organic amines (octadecyl amine, a primary amine, and hexadecyltrimethylammonium bromide, a tertiary amine) and brominated polyisobutylene‐co‐paramethylstyrene (BIMS)‐clay nanocomposites are reported. The clays and the rubber nanocomposites have been characterized with the help of Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and X‐ray diffraction (XRD). The X‐ray diffraction peaks observed in the range of 3 °–10 ° for the modified clays disappear in the rubber nanocomposites. TEM photographs show predominantly exfoliation of the clays in the range of 12 ± 4 nm in the BIMS. In the FTIR spectra of the nanocomposites, there are common peaks of virgin rubber as well as those of the clays. Excellent improvement in mechanical properties like tensile strength, elongation at break, and modulus is observed on incorporation of the nanoclays in the BIMS. Structure‐property correlation in the above nanocomposites is attempted. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4489–4502, 2004  相似文献   
8.
Some discovery work was done on the synthesis of clay nanocomposites based on renewable plant oils. Functionalized triglycerides, such as acrylated epoxidized soybean oil, maleinized acrylated epoxidized soybean oil, and soybean oil pentaerythritol maleates, combined with styrene were used as the polymer matrix. The miscibility of these monomers and clay organomodifier was assessed by solubility parameters. The formation of nanocomposites was confirmed by both X‐ray data and transmission electron microscopy. The morphology showed a mix of intercalated and partially exfoliated sheets. The flexural modulus increased 30% at only 4 vol % clay content, but there was no significant effect on flexural strength, glass‐transition temperature, and thermal stability. Property enhancement was related to the degree of exfoliation that depends on both the polarity and flexibility of the monomers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1441–1450, 2004  相似文献   
9.
Polypropylene (PP) was modified with elastomer or CaCO3 particles of two different sizes (1 μm and 50 nm) in various volume fractions. The dispersion morphology and mechanical properties of the two systems were investigated as functions of the particle size and volume fraction of the modifier. The brittle‐to‐tough transition occurred when the matrix ligament thickness was less than the critical ligament thickness, which was about 0.1 μm for the PP used here, being independent of the type of modifier. At the same matrix ligament thickness, the improvement of the toughness was obviously higher with the elastomer rather than with CaCO3, but adding CaCO3 increased the modulus of PP. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1656–1662, 2004  相似文献   
10.
Nanocomposites (NC) were formed using cationic poly(L ‐lysine) (PLL), a semicrystalline polypeptide, that was reinforced by sodium montmorillonite (MMT) clay via solution intercalation technique. By varying solution conditions such as pH, temperature, and polypeptide concentration in the presence of clay platelets, the secondary structure of PLL was controllably altered into α‐helical, β‐sheet, and random coil. The high molecular weight polypeptide shows a strong propensity to fold into the β‐sheet structure when cast as films, irrespective of the initial secondary structure in solution. Nanocomposite local morphology confirms intercalated MMT platelets with PLL over a wide range of compositions. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 239–252, 2007.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号