排序方式: 共有114条查询结果,搜索用时 15 毫秒
1.
《Composite Interfaces》2013,20(2-3):127-136
Polyurethane (PU) and polystyrene (PS) films were functionalized by ultraviolet (UV) or selective synchrotron radiations (SR) in the presence of reactive gases. The UV-PU results were compared with lowpressure plasma treatments of the same films. Oxygen or acrylic acid vapours (AA) were used as reactive gases. X-ray photoelectron spectroscopy measurements of UV modified films in the presence of oxygen or AA matched the RF-plasma treatments results. It is shown that COO and C=O functional groups were incorporated at the polymer surface efficiently with both methodologies. In addition, near-edge X-ray absorption fine structure showed that a thin film of poly(acrylic acid) is formed over the PU and PS films during the UV irradiation in the presence of AA vapours. These results resemble previous AA low-power plasma treatments. PU and PS films were also selectively functionalized by SR using oxygen as reactive gas. Surface concentrations of COO and C=O functional groups were enhanced by C1s → σ* C–C excitation after irradiation and oxygen introduction. This efficient surface functionalization was clearly observed in PS films which do not have CO and COO groups in their molecular structure. Excitations involving transitions to π* orbital (π*C=C, π*C=O) led to much lower functionalization efficiency. The SR results can be explained by taking into account previous photon stimulated ion desorption studies of polymers. SR results may open new ways to functionalize polymer surfaces selectively and efficiently. 相似文献
2.
《Composite Interfaces》2013,20(8):775-788
The incorporation of nanotube-covered fibers in continuous fiber/epoxy composites has been shown to influence the mechanical, electrical, and thermal properties of the composite. Increased interlaminar shear stress, flexural strength and modulus have been reported in such composites over composites containing bare fibers. In this study, the microstructure and interfacial shear strength (ISS) of continuous silicon carbide fiber/epoxy composites with and without nanotubes grown from the SiC fiber surface were investigated with micro-Raman spectroscopy (MRS) and microscopy. The fibers with nanotubes grown from the surface were found to have a reduced ISS compared with the bare fibers. Electron microscopy showed good wetting of epoxy in the nanotube forests, but poor attachment of the nanotube forests to the fibers. These results suggest that the mechanism leading to improvements in bulk composite properties is not due to an improvement in the fiber/matrix ISS. 相似文献
3.
《Composite Interfaces》2013,20(3):185-236
The peculiarities of reaction-induced phase separation and the structure formation in semi- and full interpenetrating polymer networks and in the blends of linear polymers formed in situ are analyzed. It is shown that for most of these systems phase separation proceeds viathe spinodal decomposition mechanism resulting in the formation of interconnected spatially periodic structures. The possible ways for the structure regulation of the composites produced are considered. 相似文献
4.
《Composite Interfaces》2013,20(5-6):393-402
Blends of linear polyurethane and poly(methyl methacrylate) were obtained by the simultaneous curing of the mixture of two monomers. It was shown that the blends obtained in situ are two-phase systems in which two phases enriched in one of the blend components are separated by an intermediate region, the interphase. From the DSC data the compositions of two phases were estimated. It was observed that introduction of a filler leads to the appearance of an additional temperature transition lying between glass transition temperatures of the two phases. The fraction of the interphase was calculated from the calorimetric data. The introduction of a filler increases this fraction. This may be considered as some improving of compatibility of the two components in the presence of a filler. 相似文献
5.
《Composite Interfaces》2013,20(8-9):539-566
This review focuses on some aspects of organic-inorganic hybrid materials prepared by the sol-gel method. This field has been studied worldwide as one of the nanotechnologies, and is now of current interest for both organic and inorganic scientists. The elaboration of organic–inorganic polymer hybrid materials using the sol-gel process can be accomplished by various approaches. The simplest method is increasing the compatibility by using physical interactions, covalent bonding and compatibilizer between organic polymer and silica gel. Other novel approaches, such as an in-situ method, NHSG (Non- Hydrolysis Sol-Gel) process, and use of reactive polymer hybrids resulted in the preparation of novel transparent organic–inorganic polymer hybrid materials. Stimulus responsive polymer hybrids are also mentioned. Furthermore, nano-structured organic–inorganic polymer hybrids are created by using supermolecular and self-assembly of organic molecules or polymers recently. The obtained nano-structured hybrid materials showed unique properties that could not be found in amorphous hybrid materials. The possibilities and applications of organic–inorganic polymer hybrid materials are also described in this review. 相似文献
6.
《Composite Interfaces》2013,20(3-4):167-186
A study of the microstructure developing at the surface of glass fibers in a poly(vinyl acetate) (PVAc)/polyester blend is presented. Three different experimental methods are used: a technique based on the Wilhelmy method to measure the wettability of the fibers before curing, and both optical microscopy and atomic force microscopy in the pulsed-force mode to characterize potential phases splitting at the fiber–matrix interface after curing. It was found that, depending on the curing conditions and the concentration in PVAc, the surface treatment of the fiber could have a significant influence on the microstructure. For a concentration in PVAc lower than 5 wt% and a curing temperature of 80°C, extreme cases, such as the development of layers of one of the phases at the surface or the formation of lenses of one phase, were observed. In other cases, in particular for elevated temperatures and higher concentrations in PVAc, the fibers did not exert a significant influence on the morphology. It was also found that in such a reactive system, surface tension considerations alone are insufficient to explain the configuration of the phases at the surface of the fibers. 相似文献
7.
《Composite Interfaces》2013,20(1):47-66
This study investigated the effectiveness of external strengthening technique. The experimental variables were the strengthening material and overlay materials using polymer mixtures. Beams considered in this study are the ones strengthened either with external steel plate or carbon fiber sheet (CFS) bonded to the overlay soffit or with reinforcing rebars in the overlay. An analytical method based on the nonlinear layered finite element method is used to simulate the load–deflection behavior of strengthened beam. The theoretically obtained load–deflection relationships and strains of the strengthened beams are compared to the corresponding experimental values. Efficiencies of the repairing techniques are evaluated by comparing the approximate measures on the cumulative slips. Parametric studies are then obtained using the developed model to investigate the effects of design variables on the overall flexural behavior of the strengthened beam. Simply supported beams under monotonically increasing symmetrical loads are considered exclusively. 相似文献
8.
《Composite Interfaces》2013,20(4-6):545-559
Solid lithium-conducting nanocomposite polymer electrolytes based on poly(oxyethylene) (POE) were prepared using high aspect ratio cellulosic whiskers and lithium imide salt, LiTFSI. The cellulosic whiskers were extracted from tunicate — a sea animal — and consisted of slender parallelepiped rods that have an average length around 1 μm and a width close to 15 nm. High performance nanocomposite electrolytes were obtained. The filler provided a high reinforcing effect, despite the favorable cellulose/POE interactions that were expected to decrease the possibility of inter-whisker connection and formation of a percolating cellulosic network, while a high level of ionic conductivity was retained with respect to unfilled polymer electrolytes. Cross-linking and plasticizing of the matrix as well as preparation of the composites from an organic medium were also investigated. 相似文献
9.
《Composite Interfaces》2013,20(8-9):737-755
The effects of viscosity ratio on the rheological and mechanical properties of the blends of four thermoplastics of low viscosity and a liquid crystalline polymer (LCP) were studied. A polyamide of reduced crystallinity (amorphous PA), a polycarbonate (PC), a polyethylene-terephthalate (PET), and a cyclic polyolefin (COC) were investigated with the copolymer of 2-hydroxy-6-naphthoic acid (HNA) and 4-hydroxybenzoic acid (HBA) (Vectra A type LCP). The LCP content changed in the range of 0–50 w/w%. The mechanical properties were determined by tensile tests on injection molded test bars in parallel and perpendicular directions to the flow. Except for the PC/LCP blends, the viscosity decreased with increasing LCP content, the tensile strength increased significantly in the parallel and decreased in the perpendicular direction indicating formation of fibrillar phase morphology. In the case of PC/LCP blends, a reinforcing effect was observed at low LCP contents, but above 20 w/w% the viscosity increased and the parallel tensile strength dropped to the value measured in the perpendicular direction. The loss of the reinforcing effect might originate from chemical reactions of the two polymers. 相似文献
10.
A copolymer of poly(acrylonitrile-co-styrene) (SAN) was synthesized via an emulsion polymerization method. Novel polymer electrolyte membranes cast from the blends of poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP), SAN and fumed silica (SiO2) are microporous and can be used in polymer lithium-ion batteries. The membrane shows excellent characteristics such as high ionic conductivity and good mechanical strength when the mass ratio between SAN and PVDF-HFP and SiO2 is 3.5/31.5/5. The ionic conductivity of the membrane soaked in a liquid electrolyte of 1 mol/L LiPF6/EC/DMC/DEC is 4.9×10-3 S cm-1 at 25℃. The membrane is electrochemical stable up to 5.5 V versus Li /Li in the liquid electrolyte. The influences of SiO2 content on the porosity and mechanical strength of the membranes were studied. Polymer lithium-ion batteries based on the membranes were assembled and their performances were also studied. 相似文献