首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   5篇
  国内免费   7篇
化学   49篇
力学   3篇
物理学   3篇
  2023年   2篇
  2022年   1篇
  2020年   4篇
  2019年   1篇
  2017年   2篇
  2016年   4篇
  2015年   2篇
  2014年   4篇
  2013年   4篇
  2012年   4篇
  2011年   3篇
  2010年   5篇
  2009年   5篇
  2008年   4篇
  2007年   4篇
  2006年   3篇
  2004年   1篇
  2003年   1篇
  2000年   1篇
排序方式: 共有55条查询结果,搜索用时 46 毫秒
1.
Well‐defined diblock and triblock copolymers composed of poly(N‐isopropylacrylamide) (PNIPAM) and poly(ethylene oxide) (PEO) were successfully synthesized through the reversible addition–fragmentation chain transfer polymerization of N‐isopropylacrylamide (NIPAM) with PEO capped with one or two dithiobenzoyl groups as a macrotransfer agent. 1H NMR, Fourier transform infrared, and gel permeation chromatography instruments were used to characterize the block copolymers obtained. The results showed that the diblock and triblock copolymers had well‐defined structures and narrow molecular weight distributions (weight‐average molecular weight/number‐average molecular weight < 1.2), and the molecular weight of the PNIPAM block in the diblock and triblock copolymers could be controlled by the initial molar ratio of NIPAM to dithiobenzoate‐terminated PEO and the NIPAM conversion. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4873–4881, 2004  相似文献   
2.
We recently reported a polymer‐coated magnetic nanoparticle (MNP) draw agent for the forward osmosis (FO) water desalination process. The water flux was found to increase when the polymer poly(sodium acrylate) (PSA) was anchored to the MNP surface as compared to the polymer (or polyelectrolyte solution) alone, due to the polymer chains being stretched out and most of the hydrophilic groups on the polymer contributing to water flux. We herein report the use of a secondary polymer poly(N‐isopropylacrylamide) PNIPAM to manipulate the PSA polymer conformation and influence inter‐ and intrachain interactions to enhance the efficiency of the FO draw agent. These PSA–PNIPAM‐coated MNPs generated a much higher water flux of ~11.66 LMH when compared to the 100 % PSA‐coated MNPs featuring a value of ~5.32 LMH under identical FO conditions. The osmotic pressure and water flux driven by the mixed polymer‐coated MNPs were found to be a strong function of the net polymer coverage on MNPs, that is, net available hydrophilic groups. Our new draw agent demonstrates potential for use in the water industry due to its improved efficiency and cost effectiveness as it uses only ~0.062 % (w/v) of the draw agent solution.  相似文献   
3.
Poly(N‐isopropylacrylamide)–halloysite (PNIPAM‐HNT) nanocomposites exhibited inverse temperature solubility with a lower critical solution temperature (LCST) in water. Palladium (Pd) nanoparticles were anchored on PNIPAM‐HNT nanocomposites with various amounts of HNT from 5 to 30 wt%. These Pd catalysts exhibited excellent reactivities for Suzuki–Miyaura coupling reactions at 50–70 °C in water. In particular, Pd anchored PNIPAM/HNT (95:5 w/w ratio) nanocomposites showed excellent recyclability up to 10 times in 96% average yield by simple filtration. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
4.
The swelling behavior of a temperature-sensitive poly-N-isopropylacrylamide(PNIPAM) hydrogel circular cylinder is studied subjected to combined extension-torsion and varied temperature. In this regard, a semi-analytical solution is proposed for general combined loading. A finite element(FE) analysis is conducted, subjecting a hydrogel cylinder to the combined extension-torsion and the varied temperature to evaluate the validity and accuracy of the solution. A user-defined UHYPER subroutine is developed and verified under free and constrained swelling conditions. The FE results illustrate excellent agreement with the semi-analytical solution. Due to the complexity of the problem, some compositions and applied loading factors are analyzed. It is revealed that for larger cross-linked density and larger ending temperature, the cylinder yields higher stresses and smaller radial swelling deformation. Besides, the radial and hoop stresses increase by applying larger twist and axial stretch. The hoop stresses intersect at approximately R/Rout = 0.58, where the hoop stress vanishes. Besides, the axial force has direct and inverse relationships with the axial stretch and the twist, respectively. However, the resultant torsional moment behavior is complex, and the position of the maximum point varies significantly by altering the axial stretch and the twist.  相似文献   
5.
Classical molecular dynamics simulations were carried out to investigate the hydrophilic to hydrophobic transition of PNIPAMco‐PEGMA close to its lower critical solution temperature (LCST) in 1 M NaCl solution. PNIPAMco‐PEGMA is a copolymer of poly(N‐isopropylacrylamide) (PNIPAM) and poly(ethylene glycol) methacrylate (PEGMA). The copolymer consists of 38 monomer units of NIPAM with two PEGMA chains attached to the PNIAPM backbone. The PNIPAMco‐PEGMA was observed to go through the hydrophilic?hydrophobic conformational change for simulations at temperature slightly above its LCST. Na+ ions were found to bind strongly and directly with amide O, even more strongly with the O atoms on PEGAMS chains, whereas Cl? ions only exhibit weak interaction with the polymer. Significantly a novel caged stable metal‐organic complex involving a Na+ ion coordinated by six O atoms from the copolymer was observed after the PNIPAMco‐PEGMA copolymer went through conformational transition to form a hydrophobic folded structure. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   
6.
Well‐defined macromolecular brushes with poly(N‐isopropyl acrylamide) (PNIPAM) side chains on random copolymer backbones were synthesized by “grafting from” approach based on click chemistry and reversible addition‐fragmentation chain transfer (RAFT) polymerization. To prepare macromolecular brushes, two linear random copolymers of 2‐(trimethylsilyloxy)ethyl methacrylate (HEMA‐TMS) and methyl methacrylate (MMA) (poly(MMA‐co‐HEMA‐TMS)) were synthesized by atom transfer radical polymerization and were subsequently derivated to azide‐containing polymers. Novel alkyne‐terminated RAFT chain transfer agent (CTA) was grafted to polymer backbones by copper‐catalyzed 1,3‐dipolar cycloaddition (azide‐alkyne click chemistry), and macro‐RAFT CTAs were obtained. PNIPAM side chains were prepared by RAFT polymerization. The macromolecular brushes have well‐defined structures, controlled molecular weights, and molecular weight distributions (Mw/Mn ≦ 1.23). The RAFT polymerization of NIPAM exhibited pseudo‐first‐order kinetics and a linear molecular weight dependence on monomer conversion, and no detectable termination was observed in the polymerization. The macromolecular brushes can self‐assemble into micelles in aqueous solution. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 443–453, 2010  相似文献   
7.
Synthesis, characterization, and applications of novel thermoresponsive polymeric coatings for quantum dots (QDs) are presented. Comb-copolymers featuring hydrophobic alkyl groups, carboxylic groups and poly(N-isopropylacrylamide) (PNIPAM) side chains with molar masses ranging from 1000 g/mol to 25,400 g/mol were obtained. The amphiphilic comb-copolymers were shown to efficiently transfer the QDs to aqueous media. The PNIPAM-coated QD materials display a lower critical solution temperature (LCST). The absorbance, luminescence emission, size of the assemblies, and electrophoretic mobility were followed as a function of temperature and the reversibility of the temperature induced changes is demonstrated by cyclic heating and cooling.  相似文献   
8.
Core–shell microgels are of increasing interest as smart carriers of catalysts, as sensors, or as building blocks for colloidal superstructures. In the context of colloidal assemblies, photonic applications are probably the most promising ones. This progress report presents and discusses the most recent results in this area focusing on the last 2–3 years, and also gives some background information. In addition, potential perspectives of this area will be outlined. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013, 51, 1073–1083  相似文献   
9.
The synthesis of temperature-responsive microgels of poly(N-isopropylacrylamide) (PNIPAM) was first reported in 1986 and, since then, there have been hundreds of publications describing the preparation, characterization and applications of these systems. This paper reviews the developments concerning the study of the structure of PNIPAM-based microgels performed over the last years using small angle neutron scattering (SANS) and also the investigations of the polymer-chain dynamics within the microgels carried out with incoherent elastic and quasielastic neutron scattering, and pulse field gradient nuclear magnetic resonance (PFG-NMR) techniques. Furthermore, the self-diffusion coefficient of the water molecules within the microgel, determined by means of solvent relaxation NMR, is also discussed as a function of the polymer volume fraction of the microgels.  相似文献   
10.
The association between hydrophobically modified poly(sodium acrylate) (HMPA) and poly(N-isopropylacrylamide) (PNIPAM) in aqueous solution was studied using turbidimetry, viscometry and fluorescence measurements. Both the polymeric and the amphiphilic nature of the HMPA influence the association process. The tendency for association, as reflected by the increase in the cloud point and the reduced viscosity of PNIPAM, increases with the length of the alkyl group and the degree of substitution of HMPA. The fluorescence study, using pyrene as a probe, ascertains that the association is of hydrophobic nature and the association process is gradual and less cooperative than the association of PNIPAM with ionic surfactants. When high molar mass HMPA is used, the hydrophobic association between HMPA and PNIPAM leads to the formation of a reversible network with significantly enhanced thickening properties as compared to the thickening ability of the corresponding pure HMPA in aqueous solution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号