首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   0篇
化学   18篇
物理学   1篇
  2019年   1篇
  2018年   3篇
  2017年   1篇
  2016年   1篇
  2015年   4篇
  2014年   3篇
  2006年   1篇
  2003年   1篇
  1995年   1篇
  1992年   1篇
  1974年   1篇
  1972年   1篇
排序方式: 共有19条查询结果,搜索用时 31 毫秒
1.
《Comptes Rendus Chimie》2014,17(7-8):641-655
Since the initial discovery of ordered mesoporous silica in early 1990s, considerable innovations were achieved regarding their synthesis, characterization and applications. One of the best outcomes of these intense research efforts is the development of a solid templating method called “nanocasting”, which is based on using mesoporous silica (or carbon) as a rigid template. This solid-to-solid replication method opened the pathway for synthesizing high surface area non-silica mesostructured materials that are challenging to obtain through conventional self-assembly processes which are based on amphiphilic soft structure-directing agents. In particular, the replicated metal oxide mesostructures obtained by this method were found to be highly versatile for a wide range of applications, especially in catalysis, owing to their large specific surface area. Furthermore, the nanocasting method is particularly suited for the synthesis of mixed metal compositions, favored by the possible confinement of mixed precursors in the nanopores of the template. In this account, we discuss some of the recent developments regarding the synthesis of nanocast mixed metal oxides and their perspectives of catalytic applications. It is here the choice of the authors to place emphasis on a few representative examples of compositions (e.g., non-noble metal-based catalysts, perovskites) and catalytic reactions (e.g., hydrogen production, gas-phase oxidation).  相似文献   
2.
3.
《Comptes Rendus Chimie》2015,18(1):45-55
The aim of this work is to investigate the contribution of the binder (NiAl2O4) on the performances of the oxygen carrier NiO/NiAl2O4. To this purpose, oxidation/reduction cycles have been performed in a fixed bed reactor using CO as a fuel. The results reveal that the binder can react with the fuel to form CO2, and that its total reduction capacity increases with temperature. XRD characterizations performed on the binder (on the fresh and after several cycles) show a shift of the diffraction peaks of NiAl2O4 toward the ones of γ-alumina, which can be attributed to a progressive decomposition of NiAl2O4 to alumina and NiO.  相似文献   
4.
Monolithic catalysts are prepared by washcoating cordierite monoliths with different sols (Pt/Al2O3, Pt/CeO2, Pt/ZrO2, Pt/Al2O3CeO2, Pt/Al2O3ZrO2, and Pt/CeO2ZrO2). These sols are prepared by a sol–gel process and characterized by specific surface area (SBET), inductively coupled plasma, hydrogen chemisorption, high-resolution transmission electron microscopy, field emission scanning electron microscopy, oxygen storage capacity, X-ray diffraction, temperature-programmed reduction, CO2 chemisorption, and the model reaction of 3,3-dimethylbutene isomerization. The catalytic performances of the monolithic catalysts are then evaluated for the acetic acid oxidation. The nature of catalyst coating has been found to influence the adherence with the cordierite monolith and the presence of cerium in the catalyst appears to increase the adherence of the latter. Pt/CeO2, Pt/Al2O3CeO2, and Pt/CeO2ZrO2 are found to be the most reducible catalysts (oxygen storage capacity and temperature-programmed reduction) and to have the lowest acidities (3,3-dimethylbutene isomerization). CO2 chemisorption shows that these catalysts possess a good basicity. From the relation established between the catalytic activity and the redox and acid–base properties it has been concluded that the reducibility is the key factor for a good catalytic activity although the basicity has a significant influence on the catalytic performance.  相似文献   
5.
《Comptes Rendus Chimie》2017,20(4):346-358
The objective of this study was to transform limonene as an agro-chemical platform for the production of a wide range of added-value compounds for pharmaceutical, cosmetic and food ingredients. This molecule was also evaluated as an alternative solvent for the extraction of several bioactive compounds compared to n-hexane. Limonene was extracted from the essential oils of orange peels through a solvent-free microwave extraction technique. Limonene was successfully transformed into products with industrial interest by catalytic oxidation using three different iron catalysts. The ability of limonene to be used as an alternative solvent was performed using two simulation tools, Hansen solubility parameters (HSPs) and the Conductor-like Screening Model for Real Solvents (COSMO-RS), and via experimentation. The results indicated that limonene could be a promising green solvent and synthon for petroleum substitution in the extraction or synthesis of bioactive compounds.  相似文献   
6.
《Comptes Rendus Chimie》2019,22(4):327-336
H3−2(x+y)MnxCoyPMo12O40 heteropolysalts (x + y ≤ 3/2 and x, y: 0–1.5) were prepared by a cationic exchange method based on barium sulfate precipitation. Structural and textural properties of salts were examined by several physicochemical techniques such as infrared, scanning electron microscopy-energy dispersive X-ray, and 31P nuclear magnetic resonance spectroscopies, X-ray diffraction diffraction, and thermogravimetric analysis, and their catalytic properties were evaluated in the cyclohexanone oxidation using hydrogen peroxide (30%). The reaction products, adipic, glutaric, succinic, hexanoic, 6-hydroxyhexanoic, 7,7-dimethoxy, and heptanoic acids and 1,1-dimethoxy octane were identified by gas chromatography–mass spectrometry analysis. Only adipic, glutaric, and succinic acids were quantified by chromatography (high-performance liquid chromatography), the other products were noted X. Adipic acid (AA) is the major product for all systems. The effects of molar ratios of catalyst/reactant and cyclohexanol/cyclohexanone, heteropolysalt composition, and reaction duration on AA yield were investigated. The stability of the catalytic system was also examined. H3−2(x+y)MnxCoyPMo12O40 catalysts were found to be efficient for the cyclohexanone oxidation with conversions >95%. Among them, H1Mn0.25Co0.75 exhibits the highest AA yield (75%).  相似文献   
7.
Summary.  This paper reports an one-pot method for the concomitant alkylation – oxidation (aromatization) of indolines, particularly effective to get easy access to N-alkyl-6-nitroindoles, which are useful platforms in medicinal chemistry. N-alkyl-6-nitroindoles are obtained in good yield (64–91%) by reaction at room temperature in non-degassed DMF of 6-nitroindoline, an alkyl halide, and NaH as base. The presence of NaH appears to be essential for a high yield conversion. Corresponding author. E-mail: pdepreux@phare.univ-lille2.fr Received December 3, 2002; accepted December 9, 2002 Published online May 26, 2003  相似文献   
8.
Ohne Zusammenfassung
Effect of cerium(IV) sulphate on the six structural-isomeric dimethylphenols (Xylenols)
  相似文献   
9.
We report in this work synthesis of TiO2 nanowires from a TiN thin film overlayed with nickel. The nanowires have been analyzed with EELS, XPS, XRD and HRTEM. It has been shown that the nanowires are single-crystalline and of the rutile structure. The growth mechanism has been studied, allowing to determine in which process conditions synthesis of nanowires occurs and to propose a growth scenario.  相似文献   
10.
《Comptes Rendus Chimie》2016,19(4):525-537
The total oxidation of toluene was carried out in a series of catalytic systems composed of either palladium or gold, as active phase, with hydroxyapatite as supports. The influence of different parameters on the catalytic reactivity was investigated: the type of support, the active phase content, the preparation method, and the nature of the active phase. Hydroxyapatite supports, impregnated by the active phase, showed better reactivities than that of the classical alumina one. Moreover, low palladium content (0.25 wt%) is enough to get high toluene conversions at low temperatures. Two preparation methods were used to introduce the active phase on the support: the conventional wet impregnation and the nanoparticle deposition achieved by impregnation of a colloidal suspension of the noble metal using the surfactant HEA16Cl. Introducing palladium by either of these methods leads to similar catalytic efficiencies. In addition to this, palladium is much more active than gold, gold was not probably present under the form of highly dispersed nanoparticles. X-ray Photoelectron Spectroscopy (XPS) evidenced PdO presence on the surface of all our catalysts. Palladium impregnated on apatite by conventional method showed an improvement of catalytic reactivity after 13 h under reacting mixture, probably because of Pd(0) formation besides PdO. As a result and after a literature survey, our catalysts could be classified among the most reactive systems towards total oxidation of toluene.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号