首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
化学   6篇
  2012年   1篇
  2008年   2篇
  1995年   1篇
  1993年   1篇
  1991年   1篇
排序方式: 共有6条查询结果,搜索用时 0 毫秒
1
1.
Crystal Structures of Two Forms of In5Mo18O28 and Twinning In5Mo18O28 is prepared from In, Mo and MoO2 at 1 150°C in an evacuated quartz glass ampoule. X-ray investigations on single crystals show monoclinic symmetry (a = 1 323.13(9), b = 951.88(10), c = 989.48(8) pm, β = 100.976(4)°, space group P 21/c (No. 14)) for form 1 . The second form ( 2 ) crystallizes in the orthorhombic system (space group Pmcn (No. 62), a = 2 596.6(5), b = 952.0(2), c = 989.6(2) pm). Twinning and charge balances are discussed.  相似文献   
2.
3.
Synthesis and Crystal Structure of PbMo5O8; a reduced Oxomolybdate with Mo10O28 Double Octahedra The crystal structure of the new phase PbMo5O8 contains oligometric Mo clusters which consist of two edge-sharing Mo6 octahedra connected according to Mo10OOO. The compound is isotypic with LaMo5O8. Isolated, divalent Pb atoms are located in the “channels” of the monoclinic structure (a = 999.3(2) pm, b = 924.7(1) pm, c = 753.6(2) pm, β = 109.39(2)°, P21/a. Compared to the compound In 11Mo40O62 the Mo? O distances (average 206 pm) and the Mo? Mo distances within the octahedral units (average 275 pm) are slightly decreased by 1 and 4 pm, respectively. The very short Mo? Mo distances (278 pm) between the cluster units which are not observed in In11Mo40O62 (320 pm) are due to excess electrons in these inter-cluster bonds which would otherwise occupy antibonding cluster states.  相似文献   
4.
5.
The fluoride-derivatized lanthanoid(III) ortho-oxomolybdates(VI) LnF[MoO4] (Ln=Sm-Tm) crystallize in the monoclinic space group P21/c with four formula units per unit cell (a=516-528 pm, b=1220-1248 pm, c=659-678 pm, β=112.5-113.1°). The structure contains one crystallographically unique Ln3+ cation surrounded by two fluoride and six oxide anions in a square antiprism (CN=8). The square antiprisms [LnF2O6] are interconnected via three edges to form layers parallel (010), which are cross-linked along [010] by Mo6+ in tetrahedral oxygen coordination to form the three-dimensional crystal structure. The fluoride anions within this arrangement exhibit a twofold coordination of Ln3+ cations in the shape of a boomerang, which is connected to another F anion to form planar [F2Ln2]4+ rhombuses. Magnetic measurements for GdF[MoO4], TbF[MoO4], and DyF[MoO4] show Curie-Weiss behavior, despite the peculiar arrangement of the lanthanoid(III) cations in layers comparable with those of gray arsenic. Furthermore, Raman, infrared, and diffuse reflectance spectroscopy data for these compounds were recorded and interpreted.  相似文献   
6.
On the Crystal Structure of In3Mo11O17 and the Physical Properties of Oligomeric Oxomolybdates In3Mo11O17 is characterized by its molybdate framework Mo22O348? belonging to the general series Mo4n+2O6n+4x? (with n = 5). The phase grows in star-like aggregates and crystallizes within the orthorhombic system (a = 988.0(2) pm, b = 951.2(2) pm, c = 3 176.7(4) pm). There are oligomeric clusters built from five trans edge-sharing Mo6 octahedra, surrounded by O atoms over all empty edges according to the Aufbau principle Mo22OOO. In the remaining structural channel one finds an In68+ polycation which is geometrically equivalent with the one of In11Mo40O62. The Mo—O and Mo—Mo distances within the cluster are the same like in In11Mo40O62, too, but there are shorter inter cluster distances (306 pm) in In3Mo11O17. Disorder in the structure may be understood in terms of the presence of constitutional isomers. While the electrical resistivity of PbMo5O8 resembles the one of a strongly disturbed metal (with a local minimum around 120 K), the temperature characteristic of Tl0.8Sn0.6Mo7O11 is typical for a semiconductor. Oxomolybdates with even longer oligomers like In11Mo40O62 and In3Mo11O17 show metallic conductivity. This course corresponds with the sizes of the clusters and their electronic intercoupling which can be estimated from the specific lengths of the inter cluster distances. The effective magnetic moment grows with increasing cluster length from 0.97 μB (PbMo5O8) to 1.40 μB (In11Mo40O62) per cluster (exception: In3Mo11O12), and so does the contribution of the temperature-independent paramagnetism (from 890 to 2191 × 10?6$ \frac{{{\rm emu}}}{{{\rm mol}}} $ per cluster). Thus, a single condensed octahedron carries roughly 440 × 10?6$ \frac{{{\rm emu}}}{{{\rm mol}}} $ as a temperature-independent paramagnetism, similar to the M6X17 halide clusters. In11Mo40O62 shows an interesting change in the temperature dependence of its magnetic suszeptibility.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号