首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
化学   4篇
  2015年   1篇
  2008年   1篇
  2007年   2篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
Two new isostructural cobalt selenite halides Co5(SeO3)4Cl2 and Co5(SeO3)4Br2 have been synthesized. They crystallize in the triclinic system space group P−1 with the following lattice parameters for Co5(SeO3)4Cl2: a=6.4935(8) Å, b=7.7288(8) Å, c=7.7443(10) Å, α=66.051(11)°, β=73.610(11)°, γ=81.268(9)°, and Z=1. The crystal structures were solved from single-crystal X-ray data, R1=3.73 and 4.03 for Co5(SeO3)4Cl2 and Co5(SeO3)4Br2, respectively. The new compounds are isostructural to Ni5(SeO3)4Br2.Magnetic susceptibility measurements on oriented single-crystalline samples show anisotropic response in a broad temperature range. The anisotropic susceptibility is quantitatively interpreted within the zero-field splitting schemes for Co2+ and Ni2+ ions. Sharp low-temperature susceptibility features, at TN=18 and 20 K for Co5(SeO3)4Cl2 and Co5(SeO3)4Br2, respectively, are ascribed to antiferromagnetic ordering in a minority magnetic subsystem. In isostructural Ni5(SeO3)4Br2 magnetically ordered subsystem represents a majority fraction (TN=46 K). Nevertheless, anisotropic susceptibility of Ni5(SeO3)4Br2 is dominated at low temperatures by a minority fraction, subject to single-ion anisotropy effects and increasing population of Sz=0 (singlet) ground state of octahedrally coordinated Ni2+.  相似文献   
2.
The new compound Co2Te3(PO4)O6Cl was synthesized by chemical reactions in a sealed and evacuated silica tube. The crystal structure was solved from single crystal diffraction data and is made up by charge neutral layers. Within the layers two types of chains are made up by edge sharing [CoO6] and [CoO5Cl] polyhedra respectively. The chains are separated by tellurium oxide and phosphate building blocks. There are only weak Van der Waals interactions in between the layers and severe diffuse scattering is observed due to faulted stacking of the layers. Structure solutions in a P-1 triclinic cell and a larger monoclinic cell in P21/c are discussed and compared to a computer generated model. The reasons for the stacking faults may be due to that there are two positions available for each layer that results in similar connectivity to the next layer in addition to the relatively wide channels in between the layers that reduce the Van der Waals interactions in between them.  相似文献   
3.
We report the synthesis, crystal structure determination, magnetic and low-temperature structural properties of a new cobalt antimony oxo-bromide. CoSb2O3Br2 crystallizes in the triclinic crystal system, space group P−1, with the following lattice parameters: a=5.306(3) Å, b=7.812(4) Å, c=8.0626(10) Å, α=88.54(3)°, β=82.17(3)°, γ=80.32(4)°, and Z=2. The crystal structure was solved from single crystal X-ray data and refined on F2, R1=3.08. The structure consists of layers made up by three building blocks, [CoO4Br2], [SbO3Br], and [SbO3] that are connected via edge- and corner-sharing so that structural Co-Co dimers are formed. The layers have no net charge and are only weakly connected by van der Waals forces to adjacent layers. Above ∼25 K the magnetic susceptibility is independent of the magnetic field and can be very well described by a Curie-Weiss law. Below 25 K the susceptibility passes through a maximum and decreases again that is typical for the onset of long-range antiferromagnetic correlations. Long-range antiferromagnetic ordering is observed below TN∼9 K indicating substantial inter-dimer exchange coupling between Co-Co dimers within the layers. However, according to the heat capacity results only a minute fraction of the entropy is associated with the long-range ordering transition. The phonon anomalies observed for T<6 K in Raman scattering and an anomaly in the specific heat point to a structural instability leading to a loss of inversion symmetry at lowest temperatures.  相似文献   
4.
The crystal structure of three new iron and copper-iron tellurite halides are presented; (I) Cu3Fe8Te12O32Cl10 that crystallizes in the orthorhombic space group Pmmn, (II) Fe8Te12O32Cl3Br3 that crystallizes in the monoclinic space group P21/c, and (III) Fe5(TeO3)6Cl2 that crystallizes in the triclinic space group P-1. The crystal structures were solved from single crystal X-ray diffraction data. All three compounds have layered crystal structures where the Fe atoms form variants of the honeycomb lattice. Highly unusual Te4+ coordination polyhedra are exemplified: [TeO3+1E], [TeO3XE], [TeO3+1XE], and [TeO3X2E] (X=halide ion, E=the lone-pair valence electrons). The crystal structures contain large non-bonding volumes occupied by the stereochemically active lone-pair electrons on Te4+.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号