首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   104篇
  免费   3篇
  国内免费   3篇
化学   82篇
力学   2篇
数学   3篇
物理学   23篇
  2023年   4篇
  2022年   4篇
  2021年   6篇
  2020年   3篇
  2019年   3篇
  2018年   3篇
  2017年   2篇
  2016年   4篇
  2015年   5篇
  2014年   1篇
  2013年   8篇
  2012年   5篇
  2011年   5篇
  2010年   5篇
  2009年   5篇
  2008年   3篇
  2007年   7篇
  2006年   6篇
  2005年   2篇
  2004年   5篇
  2003年   1篇
  2002年   6篇
  2000年   3篇
  1999年   3篇
  1997年   2篇
  1996年   4篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1982年   1篇
排序方式: 共有110条查询结果,搜索用时 31 毫秒
1.
分析了1994 ̄1995年在浙江医科大学附属第一医院门诊的口腔鳞癌患者的血清的硒浓度,结果表明口腔鳞癌患者血清硒浓度极显著低于正常人群,而手术后患者血清硒浓度又极显著高于手术前患者。  相似文献   
2.
Controlled drug delivery remains a research focus for public health to enhance patient compliance, drug efficiency and reduce the side effects of drugs. Pectin, an edible plant polysaccharide, has been shown to be useful for the construction of drug delivery systems for specific drug delivery. Several pectin derived formulations have been developed in our laboratory and tested in vitro, ex vivo, and in vivo for the ability to deliver bioactive substances for therapeutic purposes in the context of interactions with living tissues. Pectin derivatives carrying primary amine groups were more mucoadhesive and have shown potential in nasal drug delivery and other mucosal drug delivery. Pectin derivatives with highly esterified galacturonic acid residues are more hydrophobic and able to sustain the release of incorporated fragrances for a prolonged duration. Less esterified pectin derivatives are able to penetrate deeper into the skin and may be useful in aromatherapy formulations. Pectin, in combination with zein, a corn protein, forms hydrogel beads. The bound zein restricts bead swelling and retains the porosity of the beads; the pectin networks shield the zein from protease attack. The complex beads are ideal vehicles for colon-specific drug delivery. Studies presented in this paper indicate the flexibility and possibility to tailor pectin macromolecules into a variety of drug delivery systems to meet different clinical requirements. Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture.  相似文献   
3.
Because of the growing importance of pH‐sensitive hydrogels as drug delivery systems, biocompatible copolymeric hydrogels based N‐vinyl‐2‐pyrrolidinone (NVP) and methacrylic acid (MAA) were designed and synthesized. These hydrogels were investigated for oral drug delivery. Radical copolymerizations of N‐vinyl‐2‐pyrrolidinone (NVP) and methacrylic acid (MAA) with the various ratios of cross‐linking agent were carried out at 70 °C. Azabisisobutyronitrile (AIBN) was the free‐radical initiator employed and Cubane‐1,4‐dicarboxylic acid (CDA) linked to two 2‐hydroxyethyl methacrylate (HEMA) group was the crosslinking agent (CA) used for hydrogel preparations. The hydrogels were characterized by differential scanning calorimetry and FT‐IR. Equilibrium swelling studies were carried out in enzyme‐free simulated gastric and intestinal fluids (SGF and SIF, respectively). A model drug, olsalazine [3,3′‐azobis (6‐hydroxy benzoic acid)] (OSZ) as an azo derivative of 5‐aminosalicylic acid (5‐ASA), was entrapped in these gels and the in‐vitro release profiles were established separately in both enzyme‐free SGF and SIF. The drug‐release profiles indicated that the amount of drug released depended on the degree of swelling. The swelling was modulated by the amount of crosslinking of the polymer bonded drug (PBDs) prepared. Based on the great difference in hydrolysis rates at pH 1 and 7.4, these pH‐sensitive hydrogels appear to be good candidates for colon‐specific drug delivery.  相似文献   
4.
Biodegradable nanoparticles loaded with anticancer drug paclitaxel and appropriately coated with polyvinyl alcohol (PVA), polyethylene glycol (PEG) as well as d--tocopheryl polyethylene glycol 1000 succinate (TPGS) were produced and characterised by various analysis techniques such as laser light scattering (LLS) for particle size and size distribution, scanning electron microscopy (SEM) and atomic force microscopy (AFM) for particle morphology, X-ray photoelectron spectroscopy (XPS) and Fourier Transform Infrared-Photoacoustic Spectroscopy (FTIR-PAS) for surface chemistry, and high performance liquid chromatography (HPLC) for drug encapsulation efficiency (EE) and in vitro release kinetics. The emphasis was given to the possible effects of surface coating on the physicochemical and pharmaceutical properties of paclitaxel loaded nanoparticles. It was found that the type and amount of the surfactant could significantly affect the drug EE in the nanoparticles, the particles characteristics and their in vitro release behaviour. The surfactants dominated on the nanoparticles surface and the coated nanoparticles displayed in spherical shape with relative smooth surface within the resolution scope of the equipment. The particle size and size distribution showed close relation to the surface coating, which may also be responsible for the drug encapsulation efficiency and the in vitro release kinetics. A favourable formulation of drug loaded nanoparticles of desired properties could be obtained by optimising the fabrication parameters.  相似文献   
5.
A rapid and sensitive method for the analysis of delta9-tetrahydrocannabinol (THC) in preserved oral fluid was developed and fully validated. Oral fluid was collected with the Intercept, a Food and Drug Administration (FDA) approved sampling device that is used on a large scale in the U.S. for workplace drug testing. The method comprised a simple liquid-liquid extraction with hexane, followed by liquid chromatography-tandem mass spectrometry (LC-MS-MS) analysis. Chromatographic separation was achieved using a XTerra MS C18 column, eluted isocratically with 1 mM ammonium formate-methanol (10:90, v/v). Selectivity of the method was achieved by a combination of retention time, and two precursor-product ion transitions. The use of the liquid-liquid extraction was demonstrated to be highly effective and led to significant decreases in the interferences present in the matrix. Validation of the method was performed using both 100 and 500 MicroL of oral fluid. The method was linear over the range investigated (0.5-100 ng/mL and 0. 1-10 ng/mL when 100 and 500 microL, respectively, of oral fluid were used) with an excellent intra-assay and inter-assay precision (relative standard deviations, RSD <6%) for quality control samples spiked at a concentration of 2.5 and 25 ng/mL and 0.5 and 2.5 ng/mL, respectively. Limits of quantification were 0.5 and 0.1 ng/mL when using 100 and 500 microL, respectively. In contrast to existing GC-MS methods, no extensive sample clean-up and time-consuming derivatisation steps were needed. The method was subsequently applied to Intercept samples collected at the roadside and collected during a controlled study with cannabis.  相似文献   
6.
《Electrophoresis》2017,38(8):1217-1223
A new CE method was here developed, in order to study the stability of cocaine and some of its metabolites in water and in oral fluid. At first, standard mixtures of cocaine (COC), benzoylecgonine (BE) and cocaethylene (COET) in water were used to study the optimal CE parameters to separate the three compounds. Voltage, sample temperature and pH were investigated, and 25 kV, 25°C and a pH of 4.7 were selected to achieve the best separation. The stability of the three compounds in water and oral fluid was then monitored by applying the previously developed method. Three different storage temperatures (8, 25 and 37°C) were selected and analyses during a week were performed. A decrease of COC and COET peak areas and an increase of BE peak area were observed over time at 25 and 37°C. In addition, in oral fluid, the presence of enzymes and other proteins, and the differences in the molecular structures between COC and COET, caused a stronger degradation of the first compound. Instead, when samples were stored at a low temperature (8°C), the peak areas of the compounds did not vary. Thus, the use of this storage temperature is recommended, above all when sample must be analyzed after a relatively long time.  相似文献   
7.
A novel microfluidic chip‐based fluorescent DNA biosensor, which utilized the electrophoretic driving mode and magnetic beads‐based “sandwich” hybridization strategy, was developed for the sensitive and ultra‐specific detection of single‐base mismatch DNA in this study. In comparison with previous biosensors, the proposed DNA biosensor has much more robust resistibility to the complex matrix of real saliva and serum samples, shorter analysis time, and much higher discrimination ability for the detection of single‐base mismatch. These features, as well as its easiness of fabrication, operation convenience, stability, better reusability, and low cost, make it a promising alternative to the SNPs genotyping/detection in clinical diagnosis. By using the biosensor, we have successfully determined oral cancer‐related DNA in saliva and serum samples without sample labeling and any preseparation or dilution with a detection limit of 5.6 × 10?11 M, a RSD (n = 5) < 5% and a discrimination factor of 3.58–4.54 for one‐base mismatch.  相似文献   
8.
Abstract

The ability of nanoparticles having surface hydrophilic polymeric chains to enhance the oral absorption of human calcitonin was examined in rats. The oral relative bioavailability of calcitonin against its subcutaneous administration was 0.01% without nanoparticles, but increased significantly when it was administered with nanoparticles. Nanoparticles having cationic poly(vinylamine) (PVAm) chains on their surfaces had a relatively stronger enhancing effect than did other nanoparticles. When divinylbenzene was added to the nanoparticle preparation, PVAm nanoparticles with a crosslinked hydrophobic polystyrene core were synthesized. The addition of divinylbenzene resulted in nanoparticles with larger zeta potential through the efficient accumulation of hydrophilic PVAm chains on their surfaces; however, inadequate amounts decreased the zeta potential. Changes in the bioavailability proportional to the zeta potential indicated that the cationic moiety is indispensable for inducing the significant enhancement of calcitonin absorption. The chemical structure of nanoparticles could be optimized by introducing nonionic poly(N‐isopropylacrylamide) (PNIPAAm) or anionic poly(methacrylic acid) chains onto the PVAm nanoparticle surface to effectively further improve the absorption‐enhancing function of PVAm nanoparticles. Finally, the maximum bioavailability of 1.1% was achieved after oral administration of calcitonin with PVAm–PNIPAAm nanoparticles whose components, VAm macromonomer, N‐isopropylacrylamine (NIPAAm) macromonomer, and styrene were copolymerized in the molar ratio of 1.5:0.5:10.  相似文献   
9.
Oral delivery of protein drugs (PDs) made in plant cells could revolutionize current approaches to their production and delivery. Expression of PDs reduces their production cost by elimination of prohibitively expensive fermentation, purification, cold transportation/storage, and sterile injections and increases their shelf life for several years. The ability of plant cell wall to protect PDs from digestive acids/enzymes, commensal bacteria to release PDs in gut lumen after lysis of plant cell wall, and the role of gut-associated lymphoid tissue in inducing tolerance facilitate prevention or treatment of allergic, autoimmune diseases or antidrug antibody responses. The delivery of functional proteins facilitates treatment of inherited or metabolic disorders. Recent advances in making PDs free of antibiotic resistance genes in edible plant cells, long-term storage at ambient temperature maintaining their efficacy, production in Current Good Manufacturing Practice (cGMP) facilities, Investigational New Drug (IND)-enabling studies for clinical advancement, and Food and Drug Administration approval of orally delivered PDs augur well for advancing this novel drug delivery platform technology.  相似文献   
10.
Proteomic characterization of alveolar bones in oral surgery represents an analytical challenge due to their insoluble character. The implementation of a straightforward technique could lead to the routine use of proteomics in this field. This work thus developed a simple technique for the characterization of bone tissue for human maxillary and mandibular bones. It is based on the direct in-bone tryptic digestion of proteins in both healthy and pathological human maxillary and mandibular bone samples. The released peptides were then identified by the LC-MS/MS. Using this approach, a total of 1120 proteins were identified in the maxillary bone and 1151 proteins in the mandibular bone. The subsequent partial least squares–discrimination analysis (PLS-DA) of protein data made it possible to reach 100% discrimination between the samples of healthy alveolar bones and those of the bone tissue surrounding the inflammatory focus. These results indicate that the in-bone protein digestion followed by the LC-MS/MS and subsequent statistical analysis can provide a deeper insight into the field of oral surgery at the molecular level. Furthermore, it could also have a diagnostic potential in the differentiation between the proteomic patterns of healthy and pathological alveolar bone tissue. Data are available via ProteomeXchange with the identifier PXD026775.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号