首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
化学   7篇
物理学   2篇
  2023年   1篇
  2022年   1篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2012年   1篇
  2008年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
This contribution presents an optofluidic droplet router which is able to route and steer microdroplets using optically induced forces created solely by the bulk photovoltaic effect on a nonlinear substrate. The combination of microfluidic tools with the properties of a photorefractive crystal allows for the generation of dielectrophoretic forces that can be either repulsive, leading to virtual barriers, or attractive, creating virtual rails. The sign of these forces is solely determined by the electrical properties of the liquid medium under investigation. Moreover, the induced structures on the bottom of the microfluidic channel are optically reconfigurable, so that the same device can easily be adopted for different purposes. Appropriate droplet‐generating devices are fabricated by UV illumination of SU‐8 and polydimethylsiloxane replica molding of the master structures. The bottom of the channels is formed by an iron‐doped lithium niobate crystal, whose internal electric fields are induced by structured illumination patterns and exert dielectrophoretic forces on droplets in the microfluidic section.

  相似文献   

2.
提出了一种微流控电调谐非机械空间光开关器件,该器件的基本形式为“光输入阵列+光交换空间+光输出阵列”的结构,采用“水/油/水”液体棱镜作为偏光控制单元.在特定电压范围(30~110 V)内,通过电润湿效应作用的液体棱镜光束偏转角可在约-15°~15°之间连续可调.由此可构造多种平面甚至立体光开关阵列.  相似文献   
3.
The emergence of optofluidics has brought a high degree of tuneability and reconfigurability to optical devices. These possibilities are provided by characteristics of fluids including mobility, wide range of index modulation, and abrupt interfaces that can be easily reshaped. In this work, we created a new class of optofluidic waveguides, in which suspended mesoparticles were employed to greatly enhance the flexibility of the system. We demonstrated tuneable quasi single mode waveguides using spatially controllable mesoparticles in optofluidics. The coupling of waveguiding modes into the assembly of mesoparticles produces strong interactions and resonant conditions, which promote the transitions of the waveguiding modes. The modal response of the system depends on the distribution of packed particles above the polymeric rib waveguide which can be readily controlled under the appropriate combination of dielectrophoresis and hydrodynamic forces.  相似文献   
4.
A universal sandwich-like immunoassay strategy based on quantum-dots immunoprobe (QD-labeled anti-mouse IgG antibody) was developed for rapid and ultrasensitive detection of small molecules. A portable and reusable optofluidic nano-biosensing platform was applied to investigate the sandwich-like immunoassay mechanism and format of small molecules, as well as the binding kinetics between QD immunoprobe and anti-small molecule antibody. A two-step immunoassay method that involves pre-incubation mixture of different concentration of small molecule and anti-small molecule antibody, and subsequent introduction of QD immunoprobe into the optofluidic cell was conducted for small molecule determination. Compared with the one-step immunoassay method, the two-step immunoassay method can obtain higher fluorescence signal and higher sensitivity index, thus improving the nano-biosensing performance. Based on the proposed strategy, two mode targets, namely, microcystin-LR (MC-LR) and Bisphenol A (BPA) were tested with high sensitivity, rapidity, and ease of use. A higher concentration of small molecules in the sample led to less anti-small molecule antibody bound with antigen-carrier protein conjugate immobilized onto the sensor surface, and less QD immunoprobes bound with anti-small molecule antibody. This phenomenon lowered the fluorescence signal detected by nano-biosensing platform. Under optimal operating conditions, MC-LR and BPA exhibited a limit of detection of 0.003 and 0.04 μg/L, respectively. The LODs were better than those of the indirect competitive immunoassay method for small molecules via Cy5.5-labeled anti-small molecule antibody. The proposed QD-based sandwich-like immunoassay strategy was evaluated in spiked water samples, and showed good recovery, precision and accuracy without complicated sample pretreatments. All these results demonstrate that the new detection strategy could be readily applied to the other trace small molecules in real water samples.  相似文献   
5.
Aflatoxin M1 (AFM1), a highly toxic secondary metabolite, is present in a wide range of dairy products. In this study, we designed a simple, low-cost, reusable, and easy-to-operate immunosensing method for ultrasensitive detection of AFM1 in dairy products by using a portable evanescent wave-based optofluidic biosensing platform (EOBP). The developed method provides the minimum detection limit of 5 ng/L, which is below the most restrictive standard imposed by the current regulations for AFM1 in dairy products. The effect of several organic solvents, such as methanol, acetone, and acetonitrile, on the binding reaction of antibody-antigen in heterogeneous and homogeneous solutions was evaluated. Although the effect of organic solvents on the homogeneous binding reaction between antibody and antigen is more significant than that of heterogeneous binding reaction between antibody in solution and antigen immobilized onto the sensor surface, the fluorescence signal detected by EOBP is linearly dependent on AFM1 concentration. Therefore, AFM1 can be directly quantified even if the samples contain a certain organic solvent concentration. The robustness and stability of AFM1-ovalbumin conjugate allow the regeneration of modified biosensor surface for more than 200 times, thereby achieving a cost-effective and reliable AFM1 determination. The proposed method provides a rapid, ultrasensitive, and reliable AFM1 determination in dairy products without complicated sample pretreatment process.  相似文献   
6.
In this mini-review, recent advances on the role of a focused laser in micro- and nanofluidic systems is widely introduced with special interest in thermo-fluid dynamical aspects and their importance in optical manipulation. As a brief introduction to microfluidic systems, we describe the advantages and challenges of the use of micro- and nanoscale confinement in optical trapping, as well as standard fabrication techniques for micro- and nanofluidic systems. From thermo-fluid dynamical viewpoints, various phenomena that accompany a laser irradiation to fluidic devices, are explained in detail. These phenomena can affect the optical trapping of target materials significantly, and are classified into two categories: one that induces the fluid flow around the target and another that directly acts on it as an external force. These classes are reviewed by shedding light on some recent cutting-edge researches for optical manipulation. Some applications using thermo-fluid dynamics in microfluidic systems for the measurement of optical forces and for the separation, measurement, and detection of target materials are also introduced.  相似文献   
7.
The paper reviews the state-of-art for micro optical fluidic systems (MOFS), or optofluidics, which employs optics and fluidics in a microsystem environment to perform novel functionalities and in-depth analysis in the biophysical area. Various topics, which include the introduction of MOFS in biomedical engineering, the implementation of near-field optics and also the applications of MOFS to biophysical studies, are discussed. Different optical detection techniques, such as evanescent wave, surface plasmon resonance, surface enhanced Raman scattering, resonators and transistors, have been studied extensively and integrated into MOFS. In addition, MOFS also provides a platform for various studies of cell biophysics, such as cell mass determination and cell Young’s modulus measurement. Figure Cell encapsulation and trapping for refractive index measurement in MOFS  相似文献   
8.
Lead ions (Pb2+), ubiquitous and one of the most toxic metallic pollutants, have attracted increasing attentions because of their various neurotoxic effects. Pb2+ has been proven to induce a conformational change in G-quadruplex (G4) aptamers to form a stabilizing G4/Pb2+ complex. Based on this principle, an innovative optofluidics-based DNA structure-competitive aptasensor was developed for Pb2+ detection in an actual aquatic environment. The proposed sensing system has good characteristics, such as high sensitivity and selectivity, reusability, easy operation, rapidity, robustness, portability, use of a small sample volume, and cost effectiveness. A fluorescence-labeled G4 aptamer was utilized as a molecular probe. A DNA probe, a complementary strand of G4 aptamer, was immobilized onto the sensor surface. When the mixture of Pb2+ solution and G4 aptamer was introduced into the optofluidic cell, Pb2+ and the DNA probe bound competitively with the G4 aptamer. A high Pb2+ concentration reduced the binding of the aptamer and the DNA probe; thus, a low-fluorescence signal was detected. A sensitive sensing response to Pb2+ in the range of 1.0–300.0 nM with a low detection limit of 0.22 nM was exhibited under optimal conditions. The potential interference of the environmental sample matrix was assessed with spiked samples, and the recovery of Pb2+ ranged from 80 to 105% with a relative standard deviation value of <8.5%. These observations clearly illustrate that with the use of different DNA or aptamer probes, the sensing strategy presented can be easily extended to the rapid on-site monitoring of other trace analytes.  相似文献   
9.
Hollow-core photonic crystal fibers (HC-PCFs) provide a novel approach for in situ UV/Vis spectroscopy with enhanced detection sensitivity. Here, we demonstrate that longer optical path lengths than afforded by conventional cuvette-based UV/Vis spectroscopy can be used to detect and identify the CoI and CoII states in hydrogen-evolving cobaloxime catalysts, with spectral identification aided by comparison with DFT-simulated spectra. Our findings show that there are two types of signals observed for these molecular catalysts; a transient signal and a steady-state signal, with the former being assigned to the CoI state and the latter being assigned to the CoII state. These observations lend support to a unimolecular pathway, rather than a bimolecular pathway, for hydrogen evolution. This study highlights the utility of fiber-based microreactors for understanding these and a much wider range of homogeneous photocatalytic systems in the future.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号