首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
  国内免费   2篇
化学   11篇
  2023年   1篇
  2020年   1篇
  2017年   1篇
  2015年   1篇
  2012年   1篇
  2011年   2篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  1998年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
A new pentacoordinated ferrous compound [TPAFeCl]+ (TPA = tris(2-pyridylmethyl)amine) was synthesized from the reaction between H3TPA(ClO4)3 and Fe(PnPr3)2Cl2 in MeCN. The unique trigonal bipyramidal [TPAFeCl]+ complex was characterized as a S = 2 high spin complex based on the crystallographic structure, magnetic susceptibility, 1H NMR spectrum and semi-empirical ZINDO/S calculations. Crystal of [TPAFeCl]2(FeCl4)(MeCN)2 was monoclinic with a = 12.019(2) Å, b = 27.550(5) Å, c = 14.138(2) Å, β = 94.168(3)°, V = 4668.9(13) Å3, space group C/c, and the unit cell contained a racemic mixture of Δ and Λ isomers with ferrous tetrachloride anion.  相似文献   
2.
基于四价非血红素铁模型配合物[FeⅣ(O)(N4Py)]2+, 通过理论计算设计出一种新型N杂环卡宾配合物[FeⅣ(O)(N4Py)]2+. 采用密度泛函理论B3LYP方法, 计算了[FeⅣ(O)(N4Py)]2+的几何结构和电子结构, 并研究了[FeⅣ(O)(N4Py)]2+使环己烷C-H键羟基化的反应机理. 结果表明, [FeⅣ(O)(N4Py)]2+的五重态能量比基态三重态能量高约5.7 kJ/mol, 故五重态几乎不能参与反应. 赤道方向的配位基N杂环卡宾(NHC)对FeO单元的σ-贡献要大于N4Py的贡献, 而它的空间位阻效应也大于N4Py, 因此2+的稳定性强于[FeⅣ(O)(N4Py)]2+. [FeⅣ(O)(N4Py)]2+的三重态的反应能垒比[FeⅣ(O)(N4Py)]2+的三重态反应能垒高2.0 kJ/mol, 且为单态反应, 所以[FeⅣ(O)(N4Py)]2+的反应活性要高于[FeⅣ(O)(N4Py)]2+.  相似文献   
3.
采用密度泛函理论计算了[FeⅣ(O)(TMC)(NCMe)]2+ 和[FeⅣ(O)(TMCS)]+的电子结构、反应活性和Fe—O的成键性. 几何构型的优化采用非限制性的B3LYP混合密度泛函方法, 重原子Fe的优化采用是LanL2dZ基组, C, H, O, N和S的优化采用TZV基组, 理论计算结果与实验结果相符. 通过对轨道系数和键级的分析发现, TMC配位基对Fe—O的π键几乎没有影响. 由于竖直方向的硫甲基配位基的轨道与Fe的3d轨道具有较强的重迭, 而乙腈配位基作为轴向配体时, 这种重迭则小得多, 导致了两种配合物在电子结构和反应活性上存在一定的差别.  相似文献   
4.
5.
A glycine derivative of bis(phenol)amine ligand (HLGly) was synthesized and characterized by 1H NMR and IR spectroscopies. The iron(III) complex (LGlyFe) of this ligand was synthesized and characterized by IR, UV-Vis, X-ray and magnetic susceptibility studies. X-ray analysis reveals that in LGlyFe the iron(III) center has a distorted trigonal bipyramidal coordination sphere and is surrounded by an amine nitrogen, a carboxylate and two phenolate oxygen atoms. The mentioned carboxylate group acts as μ-bridging ligand for iron centers of neighbor complexes. The variable-temperature magnetic susceptibility indicates that LGlyFe is the paramagnetic high spin iron(III) complex. It has been shown that electrochemical oxidation of this complex is ligand-centered due to the oxidation of phenolate to the phenoxyl radicals. The LGlyFe complex also undergoes an electrochemical metal-centered reduction of ferric to ferrous ion. The oxygenation of 3,5-di-tert-butyl-catechol, with LGlyFe in the presence of dioxygen was investigated.  相似文献   
6.
Two aminoethanol derivatives of aminophenol ligands were synthesized and characterized by IR and 1H NMR spectroscopies. The binuclear iron(III) complexes of these ligands have been prepared and characterized by IR, 1H NMR and UV-Vis spectroscopic techniques, cyclic voltammetry, single crystal X-ray diffraction and magnetic susceptibility studies. X-ray analysis revealed binuclear complexes, Fe2(L2), in which Fe(III) centers are surrounded by two phenolate and hydroxyl oxygen atoms, and amine nitrogens of the ligands. The metal active sites of both complexes are held together by the two above mentioned hydroxyl bridges. Variable temperature magnetic susceptibility indicates antiferromagnetic coupling between the iron centers of both complexes. This exchange coupling is stronger for Fe2(Lae)2, such that it shows a room temperature strong coupling between the two iron centers. The investigated complexes undergo irreversible electrochemical oxidation and reduction.  相似文献   
7.
The potential of the redox couple FeIV=O / FeIII–O is of interest for the reactivity of the high-valent nonheme iron oxidants in enzymes and bioinspired small molecule systems but, unfortunately, experimentally it so far is very poorly described. Discussed are three computational methods that are used in combination with available experimental data derived from titrations of FeIV=O species with ferrocene derivatives in dry acetonitrile, and from spectroelectrochemical titrations of FeIII–OH complexes in wet acetonitrile, i.e. describing the FeIV=O / FeIII–OH couple – both data sets are known to have some ambiguities. First, a DFT-based method is used to compute the values of 14 FeIV=O / FeIII–O couples with an error margin of around 110 mV. A subset of four species of the original data set is used to evaluate a DLPNO-CCSD(T) based approach, and another subset of complexes, where the spectroelectrochemically determined FeIV=O / FeIII–OH potentials are also known, are used for a Bordwell-Polanyi analysis, which also yield pKa values. It is shown that the three approaches lead to a consistent picture but due to possible ambiguities with the experimental data, it currently is not possible to fully evaluate the accuracy of the used approaches.  相似文献   
8.
The reactions of three polypyridylamine ferrous complexes, [Fe(TPEN)]2+, [Fe(TPPN)]2+, and [Fe(TPTN)]2+, with nitric oxide (NO) (where TPEN = N,N,N′,N′-tetrakis(2-pyridylmethyl)ethylenediamine, TPPN = N,N,N′,N′-tetrakis(2-pyridylmethyl)-1,2-propylenediamine, and TPTN = N,N,N′,N′-tetrakis(2-pyridylmethyl)trimethylenediamine) were investigated. The first two complexes, which are spin-crossover systems, presented second-order rate constants for complex formation reactions (kf) of 8.4 × 103 and 9.3 × 103 M?1 s?1, respectively (pH 5.0, 25 °C, I = 0.1 M). In contrast, the [Fe(TPTN)]2+ complex, which is in low-spin ground state, did not show any detectable reaction with NO. kf values are lower than those of high-spin Fe(II) complexes, such as [Fe(EDTA)]2? (EDTA = ethylenediaminetetraacetate) and [Fe(H2O)]2+, but higher than low-spin Fe(II) complexes, such as [Fe(CN)5(H2O)]3? and [Fe(bipyridine)3]2+. The release of NO from the [Fe(TPEN)NO]2+ and [Fe(TPPN)NO]2+ complexes were also studied, showing the values 15.6 and 17.7 s?1, respectively, comparable to the high-spin aminocarboxylate analogs. A mechanism is proposed based on the spin-crossover behavior and the geometry of these complexes and is discussed in the context of previous publications.  相似文献   
9.
The structures and mechanisms for hydrogen abstraction from isopropylbenzene for four high-valence complexes, cis-β-[FeIV(O)(BQCN)]2+ (Fe-2b and Fe-2b-2) and cis-β-[RuIV(O)(BQCN)]2+ (Ru-2b and Ru-2b-2) (BQCN = N,N′-dimethyl-N,N′-bis(8-quinolyl)-cyclohexanediamine), were investigated using density functional theory. Of the two iron complexes, Fe-2b-2 has more exposed FeO units than Fe-2b, with iron being further out of the equatorial plane because of the steric interaction of the same ligand topologies with the iron-oxo group trans to a quinolyl or amine nitrogen. The contribution of BQCN to Fe-2b is higher than the contribution to Fe-2b-2 as shown by the density-of-states spectra. The iron isomers can abstract hydrogen from isopropylbenzene via two-state reactivity patterns, whereas the ruthenium isomers react with isopropylbenzene via a single-state mechanism. In the gas phase, the relative reactivity exhibits the trend Fe-2b > Fe-2b-2, whereas with the addition of the ZPE correction and the SMD model, the relative reactivity follows Fe-2b-2 > Fe-2b. For the ruthenium complexes, the relative reactivity follows the trend Ru-2b-2 > Ru-2b in both the gas phase and solvent. Thus, the same ligand topologies with the metal-oxo group trans to a different nitrogen affect the reactivities of the iron and ruthenium complexes.  相似文献   
10.
The degradation of halogenated arenes , which are considered as hazardous compounds from a toxicological and environmental point of view, can be effected by non-heme iron enzymes such as chlorocatechol dioxygenases. In principle, this process of biological oxygenation mimics the reaction of the iron complex shown below [Eq. (a); Py=2-pyridyl].  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号