首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   63篇
  免费   6篇
  国内免费   2篇
化学   71篇
  2023年   1篇
  2020年   2篇
  2019年   2篇
  2017年   3篇
  2016年   3篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2012年   5篇
  2011年   4篇
  2010年   1篇
  2009年   1篇
  2008年   6篇
  2007年   16篇
  2006年   8篇
  2005年   3篇
  2004年   3篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1996年   2篇
  1994年   1篇
  1984年   1篇
排序方式: 共有71条查询结果,搜索用时 15 毫秒
1.
Rhenium Dicarbonyl‐Nitrosyl Complexes with Imidazole Different rhenium‐dicarbonyl‐nitrosyl complexes with imidazole (Im) as monodentate ligand have been synthesized and characterized, starting from [NEt4][ReCl3(CO)2(NO)] and [ReCl(μ?Cl)(CO)2(NO)]2. Whereas the complexes [ReCl2(Im)(CO)2(NO)] and [ReCl(Im)2(CO)2(NO)]+ were achieved in high yields, the complex [Re(Im)3(CO)2(NO)]2+ with three imidazole ligands could only be isolated after complete removal of all halide ions (with AgBF4) in low yield. The synthesis of a corresponding 99mTc‐dicarbonyl‐nitrosyl complex with imidazole opens a new perspective for such compounds as potential radiopharmaceuticals and alternatives to the already established 99mTc‐tricarbonyl complexes.  相似文献   
2.
3.
The deep blue, paramagnetic Cs2[TcII(NO)F5] is formed during reactions of pertechnetate, acetohydroxamic acid, and CsF in aqueous HF. A reaction of Cs2[Tc(NO)F5] with BF3 · MeOH in acetonitrile gives yellow blocks of the fluorido‐bridged dimer [{TcI(NO)(CH3CN)4}2F](BF4)3. The compound is stable as solid and in acetonitrile solutions. The complex cation contains a bent μ‐F ligand and two linear nitrosyl groups.  相似文献   
4.
With copper(I) iodide as catalyst, σ-alkynyls, compounds (η5-C5H5)Cr(NO)2(CC-C6H5) (5), [(η5-C5H4)-COOCH3]Cr(NO)2(CC-C6H5) (10), and [(η5-C5H4)-COOCH3]W(CO)3(CC-C6H5) (13), were prepared from their corresponding metal chloride 1, 6 and 12. Structures of compound 3, 5 and 12 have been solved by X-ray diffraction studies. In the case of 5, there is an internal mirror plane passing through the phenylethynyl ligand and bisecting the Cp ring. The phenyl group is oriented perpendicularly to the Cp with an eclipsed conformation. The twist angle is 0° and 118.4° for -CC-Ph and two NO ligands, respectively. The orientation is rationalized in terms of orbital overlap between ψ3 of Cp, dπ of Cr atom, and π of alkynyl ligand, and complemented by molecular orbital calculation. The opposite correlation was observed on the chemical shift assignments of C(2)-C(5) on Cp ring in compounds 6 and 12, using HetCOR NMR spectroscopy. The electron density distribution in the cyclopentadienyl ring is discussed on the basis of 13C NMR data and compared with the calculations via density functional B3LYP correlation-exchange method.  相似文献   
5.
The synthesis and structural characterization of trans‐[RhCl(NO)(PtBu2H)2]BF4 ( 2 ) is reported. The title compound could easily be prepared in good yields by a kind of “bridge‐splitting” reaction of [{Rh(μ‐Cl)(PtBu2H)2}2] ( 1 ) with an appropriate amount of nitrosonium tetrafluoridoborate in dichloromethane at room temperature. Single crystals of 2 were grown from dichloromethane/diethyl ether and were analyzed by X‐ray crystallography.  相似文献   
6.
Hydrogenation of cyclohexene with 0.1 mol% of the (nitrosyl)ruthenium catalyst [CpRu(NO)(C6H5)2] (1; Cp = η5-C5(CH3)5) under 1.0 MPa of H2 in water at 90 °C for 13 h afforded cyclohexane in 94% yield. The nitrosyl-bridged dinuclear complex [CpRu(μ2-NO)2RuCp] (2) and the mononuclear cyclohexene complex [CpRu(NO)(η2-C6H10)] (3), which also serve as catalyst precursors, have been obtained from the reaction mixture. X-ray crystallographic analyses of 2 and 3 have revealed that the bridging nitrosyl ligands in 2 form an almost planar Ru2N2 four-membered ring with the Ru–Ru distance of 2.5366(5) Å, whereas the nitrosyl ligand in 3 is linear. On the other hand, a ruthenium complex without a nitrosyl ligand [CpRu(CH3CN)3][OSO2CF3] proved to be less effective for this hydrogenation.  相似文献   
7.
The complex cis-[Ru(Lpy)NO]3+ (I) (Lpy = N-(2-methylpyridyl)1,4,8,11-tetraazacyclotetradecane) was prepared by the stoichiometric reaction between Ru(dmso)4Cl2 and Lpy and an excess of NaNO2 in ethanolic medium, followed by acidification of the solution. The diamagnetic species was isolated as its hexafluorophosphate salt, and fully characterized by IR (νNO = 1917 cm−1) and diverse NMR techniques in combination with theoretical computations based on the density functional theory (DFT). The compound displays strong electronic transitions below 300 nm and weak ones in the visible region of the spectrum, all of them solvent insensitive. The reaction of cis-[Ru(Lpy)NO]3+ with OH generates the strongly colored nitro compound cis-[Ru(Lpy)NO2]+ (II) The {RuNO}6 compound can be interconverted into the one-electron reduced {RuNO}7 species cis-[Ru(Lpy)NO]2+ (III). The reduction process is completely reversible in the cyclic voltammetry timescale with E0 (versus Ag/AgCl, 3 M Cl) = −0.02 V and 0.18 V in water and acetonitrile, respectively. Controlled potential reduction in both solvents yields to the quantitative formation of III, a process which involves significant changes in the electronic spectroscopy. The {RuNO}7 species proved to be inert against ligand loss, and electrogenerated solutions remained unchanged for several hours if protected from atmospheric oxygen. Electrochemical reoxidation or exposure to air lead to the complete recovery of the starting cis-[Ru(Lpy)NO]3+ material, without signs of secondary reactions. The robustness of the coordination sphere appears as a consequence of the multidentate nature of Lpy.  相似文献   
8.
Nitrosyl fluoride and nitrosyl chloride are crystallized from the melt. The crystal structures are made up by ON–F and ON–Cl molecules with only weak intermolecular interactions. ON–F: a = 411.0(2), b = 439.1(2), c = 1020.2(4) pm, space group P212121. ON–Cl: a = 1084.0(2), b = 543.5(1), c = 409.3(1) pm, space group Pnma. Both molecules have considerable longer nitrogen‐halogen bonds and shorter nitrogen‐oxygen bonds in the solid than in the gaseous state. These differences between gas and solid state structure are expressed much stronger in ON–Cl than in ON–F. ON–F functions as a solvate molecule in the cation of NO+(NOF)2IF8. Here the ON–F molecule has a drastically shortened NO and lengthened NF bond. NO+(NOF)2IF8: a = 618.9(1), b = 1039.4(1), c = 2842.1(1) pm, space group P212121.  相似文献   
9.
CpCr(NO)(CO)_2与Fe(C_5H_4S)_2S反应,形成氧化-还原产物CpCr(NO)(SC_5H_4)_2Fe(1)。双杂核二茂铁化合物CpM(NO)(EC_5H_4)_2Fe[M=Mo,E=S(2a),Se(2b);M=W,E=S(4a),Se(4b)]、CpMo(NO)(SC_5H_4)_2Fe(3)、Cp_2Mo(SeC_5H_4)_2Fe(6)和Cp_2W(SC_5H_4)_2Fe(7)可通过Fe(C_5H_4ELi)_2·2THF(E=S,Se)与CpM(NO)I_2(M=Mo,W)、[CpMo(NO)I_2]_2或Cp_2MCl_2(M=Mo,W)反应制得。三核杂原子二茂铁化合物[CpCr(NO)_2]_2(EC_5H_4)_2Fe[E=S(8a),Se(8b)],由Fe(C_5H_4ELi)_2·2THF(E=S,Se)与二倍摩尔量的CpCr(NO)_2I反应制备。通过AgBF_4氧化2a得到二茂铁离子型化合物[CpMo(NO)(SC_5H_4)_2Fe]~ BF_4~-(5)。采用元素分析、红外光谱、~1H和~(13)C NMR谱以及EI-MS表征了所合成的新型化合物。  相似文献   
10.
The reaction of RuCl3NO · 2H2O with stoichiometric amount of dppf, 1,1′-bis(diphenylphosphino)ferrocene, afforded the new neutral nitrosyl complex fac-[RuCl3(NO)(dppf)] which was characterized by spectroscopical, electrochemical and X-ray crystallography techniques as well as elemental analysis. The νNO band in the IR spectrum is at 1860 cm−1 (CH2Cl2 solution) and in the cyclic voltammogram an irreversible wave was observed at −1.35 V, both are characteristics of a nitrosonium (NO+) character for the coordinated NO. Additionally, preliminary in vitro antitumor activity against the MDA-MB-231 breast tumor cell line was carried out for the new complex. The initial results indicated an important activity for fac-[RuCl3(NO)(dppf)] (IC50 = 10 ± 3 μM ). The complex has a higher cytotoxicity than the precursor complex RuCl3NO · 2H2O, the free dppf ligand as well as the reference metallodrug cisplatin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号