首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1855篇
  免费   119篇
  国内免费   505篇
化学   1878篇
晶体学   6篇
力学   6篇
综合类   3篇
数学   5篇
物理学   581篇
  2023年   58篇
  2022年   53篇
  2021年   51篇
  2020年   52篇
  2019年   59篇
  2018年   44篇
  2017年   62篇
  2016年   78篇
  2015年   61篇
  2014年   100篇
  2013年   141篇
  2012年   97篇
  2011年   114篇
  2010年   102篇
  2009年   126篇
  2008年   113篇
  2007年   169篇
  2006年   138篇
  2005年   116篇
  2004年   108篇
  2003年   94篇
  2002年   57篇
  2001年   50篇
  2000年   45篇
  1999年   55篇
  1998年   72篇
  1997年   56篇
  1996年   41篇
  1995年   29篇
  1994年   22篇
  1993年   24篇
  1992年   18篇
  1991年   7篇
  1990年   13篇
  1989年   8篇
  1988年   4篇
  1987年   4篇
  1986年   8篇
  1985年   4篇
  1984年   4篇
  1982年   6篇
  1981年   3篇
  1979年   2篇
  1975年   2篇
  1974年   1篇
  1972年   1篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
  1966年   1篇
排序方式: 共有2479条查询结果,搜索用时 15 毫秒
1.
Herein, we report a Mott-Schottky catalyst by entrapping cobalt nanoparticles inside the N-doped graphene shell (Co@NC). The Co@NC delivered excellent oxygen evolution activity with an overpotential of merely 248 mV at a current density of 10 mA cm–2 with promising long-term stability. The importance of Co encapsulated in NC has further been demonstrated by synthesizing Co nanoparticles without NC shell. The synergy between the hexagonal close-packed (hcp) and face-centered cubic (fcc) Co plays a major role to improve the OER activity, whereas the NC shell optimizes the electronic structure, improves the electron conductivity, and offers a large number of active sites in Co@NC. The density functional theory calculations have revealed that the hcp Co has a dominant role in the surface reaction of electrocatalytic oxygen evolution, whereas the fcc phase induces the built-in electric field at the interfaces with N-doped graphene to accelerate the H+ ion transport.  相似文献   
2.
Eldad Herceg 《Surface science》2006,600(19):4563-4571
The formation of a well-ordered p(2 × 2) overlayer of atomic nitrogen on the Pt(1 1 1) surface and its reaction with hydrogen were characterized with reflection absorption infrared spectroscopy (RAIRS), temperature programmed desorption (TPD), low energy electron diffraction (LEED), Auger electron spectroscopy (AES), and X-ray photoelectron spectroscopy (XPS). The p(2 × 2)-N overlayer is formed by exposure of ammonia to a surface at 85 K that is covered with 0.44 monolayer (ML) of molecular oxygen and then heating to 400 K. The reaction between ammonia and oxygen produces water, which desorbs below 400 K. The only desorption product observed above 400 K is molecular nitrogen, which has a peak desorption temperature of 453 K. The absence of oxygen after the 400 K anneal is confirmed with AES. Although atomic nitrogen can also be produced on the surface through the reaction of ammonia with an atomic, rather than molecular, oxygen overlayer at a saturation coverage of 0.25 ML, the yield of surface nitrogen is significantly less, as indicated by the N2 TPD peak area. Atomic nitrogen readily reacts with hydrogen to produce the NH species, which is characterized with RAIRS by an intense and narrow (FWHM ∼ 4 cm−1) peak at 3322 cm−1. The areas of the H2 TPD peak associated with NH dissociation and the XPS N 1s peak associated with the NH species indicate that not all of the surface N atoms can be converted to NH by the methods used here.  相似文献   
3.
Radioactive tracer studies confirm the earlier electrochemical results that carbon monoxide can virtually completely displace iodine adatoms. For the first time, it is found that iodine adatoms are not displaced by carbon monoxide when iodide anions are adsorbed in the presence of an upd silver monolayer. The possible reasons for the effect observed are discussed.  相似文献   
4.
The local adsorption geometry of CO adsorbed in different states on Ni(1 0 0) and on Ni(1 0 0) precovered with atomic hydrogen has been determined by C 1s (and O 1s) scanned-energy mode photoelectron diffraction, using the photoelectron binding energy changes to characterise the different states. The results confirm previous spectroscopic assignments of local atop and bridge sites both with and without coadsorbed hydrogen. The measured Ni–C bondlengths for the Ni(1 0 0)/CO states show an increase of 0.16 ± 0.04 Å in going from atop to bridge sites, while comparison with similar results for Ni(1 1 1)/CO for threefold coordinated adsorption sites show a further lengthening of the bond by 0.05 ± 0.04 Å. These changes in the Ni–CO chemisorption bondlength with bond order (for approximately constant adsorption energy) are consistent with the standard Pauling rules. However, comparison of CO adsorbed in the atop geometry with and without coadsorbed hydrogen shows that the coadsorption increases the Ni–C bondlength by only 0.06 ± 0.04 Å, despite the decrease in adsorption energy of a factor of 2 or more. This result is also reproduced by density functional theory slab calculations. The results of both the experiments and the density functional theory calculations show that CO adsorption onto the Ni(1 0 0)/H surface is accompanied by significant structural modification; the low desorption energy may then be attributed to the energy cost of this restructuring rather than weak local bonding.  相似文献   
5.
Due to the discovery of Au as a catalyst for low temperature CO oxidation, the adsorption of CO on Au surfaces has attracted a lot of attention recently. On stepped and rough single crystal surfaces as well as on deposited particles two characteristic desorption states above 100 K have been observed via TPD. We have studied Au deposits on graphite in order to elucidate the nature of these desorption peaks in more detail. For this purpose, Au was deposited at 100 K and 300 K on HOPG as a weakly interacting support. In analogy to other supports, we obtain two desorption states (∼140 K and ∼170 K) whose relative intensities depend strongly on the deposition temperature with the high temperature peak being much more pronounced for the 100 K deposits. After annealing to 600 K, both states drastically lose intensity. XP spectra, on the other hand, show virtually no decrease of the Au 4f intensity as would be expected for desorption or significant changes of the particle morphologies. We conclude that both desorption peaks are defect-related and connected with under-coordinated Au atoms that are lost for the most part upon annealing. These sites could be located at the perimeter of dendritic islands or on small, defect-rich particles in addition to larger particles not adsorbing CO at 100 K. Preliminary STM results are in favour of the second interpretation.  相似文献   
6.
7.
Differential scanning calorimetry and high temperature x-ray diffraction were used to study the perfectly alternating copolymer of ethene and carbon monoxide (polyketone; POKC2). It was found that oriented POK-C2 fibers show a crystalline phase transition at a temperature between 110–125°C with a 10% change in crystalline density. At this temperature, the crystal structure reported recently (POK-α) is transformed to a crystal structure that was reported in the past for room temperature imperfectly alternating polyketone. The latter structure will be designated as POK-β. The influence of chain defects on the crystal structure was studied by synthesizing terpolymers (POK-C2/C3), in which small amounts of propylene-CO units are incorporated into the polymer backbone. The resulting terpolymers differ from the copolymer by the presence of methyl groups randomly distributed along the polyketone backbone chain. Evidence is presented that indicates that the methyl groups are built into the crystal lattice as defects. With more than 5 mole-% propene the terpolymer fibers crystallize exclusively in the β-modification. Below this level the α/β ratio (at room temperature) increases with decreasing amounts of propene. Both as-synthesized and as-spun POK-C2 were found to consist of both POK-α and POK-β; the α/β ratio depends on the method of preparation. Because the drawn POK-C2 fibers studied here consist exclusively of POK-α, the process of spinning and drawing leads to the transformation of unoriented β-rich material into oriented POK-α. © 1995 John Wiley & Sons, Inc.  相似文献   
8.
Nanotube aggregates with high porosity were prepared from hydrothermal treatment of TiO2 particles in NaOH at 130 °C, followed by HCl rinsing to different pH values. Pore structure of the aggregates, which were mainly mesoporous, was characterized by analyzing the N2 sorption isotherm with different methods including the t-plot and density function theory. The surface area, pore volume and mean pore size of the aggregates increased with the rinsing acidity to reach a maximum (e.g. 400 m2/g in surface area) at pH 1.6 and then decreased with further increase of the acidity. The crystalline phase and composition of the aggregates were, as well, significantly affected by the acidity of the post-treatment rinsing. Large-surface area aggregates were of loosely-attached nanotubes, composed of both anatase TiO2 and H2Ti2O5·H2O, obtained under a mildly acidic rinsing condition, while basic or highly acidic conditions resulted in the formation of closely coagulated dense structures consisting of different crystalline phases.  相似文献   
9.
钯II催化CO/乙烯共聚加压原位红外光谱研究   总被引:1,自引:1,他引:1  
聚酿以其优良的物理、化学性能及原料(CO乙烯)简单易得的优点,在世界范围内已引起人们的普遍关注.为寻找价廉的催化剂或改良高效或(11)一双磷催化剂以推动聚酮的工业化进程,必须对共聚机理进行深入的研究.S;,n[’,’1、DrentP]等人根据对产品主链和端基的分析首先  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号