首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
化学   11篇
  2020年   1篇
  2019年   3篇
  2017年   3篇
  2016年   1篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
排序方式: 共有11条查询结果,搜索用时 31 毫秒
1.
2.
3.
4.
The first study in which stochastic simulations of a two‐component molecular machine are performed in the mass‐action regime is presented. This system is an autonomous molecular pump consisting of a photoactive axle that creates a directed flow of rings through it by exploiting light energy away from equilibrium. The investigation demonstrates that the pump can operate in two regimes, both experimentally accessible, in which light‐driven steps can be rate‐determining or not. The number of photons exploited by an individual molecular pump, as well as the precision of cycling and the overall efficiency, critically rely on the operating regime of the machine. This approach provides useful information not only to guide the chemical design of a self‐assembling molecular device with desired features, but also to elucidate the effect of the environment on its performance, thus facilitating its experimental investigation.  相似文献   
5.
Non-Newtonian fluids are ubiquitous in daily life and industrial applications. Herein, we report an intelligent fluidic system integrating two distinct non-Newtonian rheological properties mediated by an autocatalytic enzyme reaction. Associative polyelectrolytes bearing a small amount of ionic and alkyl groups are engineered: by carefully balancing the charge density and the hydrophobic effect, the polymer solutions demonstrate a unique shear thickening property at low pH while shear thinning at high pH. The urea-urease clock reaction is utilized to program a feedback-induced pH change, leading to a strong upturn of the nonlinear viscoelastic properties. As long as the chemical fuel is supplied, two distinct non-Newtonian states can be achieved with a tunable lifetime span. As a proof of concept, we demonstrate how the physical energy-driven nonequilibrium properties can be manipulated by a chemical-fueled process.  相似文献   
6.
7.
Calix[4]arene‐derived surfactants form monodisperse micelles with a well‐defined aggregation number (N agg) of 4, 6, 8, 12, or 20, corresponding to the Platonic solids. This feature is in strong contrast to conventional micelles. In this study, a transition from a dodecamer (N agg=12) to an icosamer (N agg=20) was induced by a rapid increase in the NaCl concentration (C NaCl) using a stopped‐flow device and directly observed by time‐resolved small‐angle X‐ray scattering. The N agg remained unchanged during the first 60 s after the increase in C NaCl , and then abruptly increased to 20. This feature resembles phase transitions in supersaturated or supercooled states, or highly cooperative phenomena. We surmise that this finding may be due to the fact that only a few N agg values are thermodynamically allowed when N agg is sufficiently small. This is the first observation of such an induction time in micellar aggregation.  相似文献   
8.
To understand the emergence of life, a better understanding of the physical chemistry of primordial non‐equilibrium conditions is essential. Significant salt concentrations are required for the catalytic function of RNA. The separation of oligonucleotides into single strands is a difficult problem as the hydrolysis of RNA becomes a limiting factor at high temperatures. Salt concentrations modulate the melting of DNA or RNA, and its periodic modulation would enable melting and annealing cycles at low temperatures. In our experiments, a moderate temperature difference created a miniaturized water cycle, resulting in fluctuations in salt concentration, leading to melting of oligonucleotides at temperatures 20 °C below the melting temperature. This would enable the reshuffling of duplex oligonucleotides, necessary for ligation chain replication. The findings suggest an autonomous route to overcome the strand‐separation problem of non‐enzymatic replication in early evolution.  相似文献   
9.
Naturally occurring systems have the ability to self‐regulate, which plays a key role in their structural and functional adaptation. The autonomous behavior in living systems is biocatalytically controlled by the continuous consumption of energy to remain in a non‐equilibrium condition. In this work, we show the construction of a self‐regulated “breathing” microgel that uses chemical fuels to keep the system in the out‐of‐equilibrium state. The enzyme urease is utilized to program a feedback‐induced pH change, which in turn tunes the size switch and fluorescence intensity of the microgel. A continuous supply of chemical fuels to the system allows the process to be reversible. This microgel with tunable autonomous properties provides insights into the design of artificial systems and dynamic soft materials.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号