首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   1篇
  国内免费   2篇
化学   5篇
物理学   8篇
  2022年   1篇
  2017年   1篇
  2014年   1篇
  2012年   2篇
  2011年   3篇
  2010年   1篇
  2008年   2篇
  2007年   1篇
  2003年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
Ni-doped anatase TiO2 nanobelts (NBs) with different Ni2+ contents were simply prepared by combining ion-exchange with hydrothermal treatment. They were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR), and magnetic measurement techniques. The results showed that Ni2+ cations doped into the TiO2 lattice and no metallic nickel clusters or nanoparticles could be found. The magnetic results demonstrated that the prepared Ni-doped TiO2 samples had complex magnetic mechanism including room-temperature ferromagnetic and paramagnetic behaviors, and with the increase of Ni2+ content, the magnetization also increased under the same applied field owing to uniform distribution of Ni2+ ions in TiO2 nanobelts.  相似文献   
2.
We synthesized an electrochemical structurally stable composite electrode, containing Ni-doped Co(CO3)0.5OH ⋅ 0.11H2O nanoneedles and nanoflake-/nanofrustum-like Ni(OH)2 with highly hydrophilic group, leading to enhanced rare performance. The electrode exhibits an outstanding ultra-long cycle life of more than 140,000 cycles. Specially, the assembled aqueous hybrid supercapacitor presents more than 80 % capacity retention even after 170,000 cycles and high energy density of 44.5 Wh kg−1. This work highlights a feasible strategy to design and develop high-efficiency electrodes via engineering on composition and nanostructure.  相似文献   
3.
4.
The very recently discovered pseudo-binary hexagonal silicide SrNixSi2−x, which exhibits low-TC superconductivity, was examined theoretically to understand the effect of the unusual doping type (partial replacement of Si by Ni) on the electronic band structure of this material. Besides, the possible factors of the stabilization of the hexagonal AlB2-type structure of SrSi2 upon substitution of Ni for Si, and the solubility limit of Ni in SrNixSi2−x are discussed in terms of competing Si–Si, Si–Ni, and Ni–Ni bonds.  相似文献   
5.
YBCO体系中Ni替代位置分布的转移与正电子寿命参数的变化   总被引:3,自引:1,他引:2  
利用正电子湮没和X—射线衍射技术,对Ni替代的YBa2Cu3-xNixO7-δ(x=0.0-0.5)超导体系进行了系统研究,分析了体系的精细结构和正电子寿命参数的变化特征,给出了Ni替代位置在Cu(1)和Cu(2)位之间的可能转移以及与正电子寿命参数之间的关联。结果表明,在小替代浓度下,Ni主要占据Cu(2)位,随替代含量的增加,出现部分Ni向Cu(1)位转移,进一步增大Ni替代含量(x≥0.2),则出现部分Ni在Cu(1)和Cu(2)位之间随机分布,并伴随有杂相出现。同时,讨论了Ni对超导电性抑制的磁散射机理及其解释。  相似文献   
6.
XPS depth profiles were used to investigate the effects of rapid thermal annealing under varying conditions on the structural, magnetic and optical properties of Ni-doped ZnO thin films. Oxidization of metallic Ni from its metallic state to two-valence oxidation state occurred in the film annealed in air at 600 °C, while reduction of Ni2+ from its two-valence oxidation state to metallic state occurred in the film annealed in Ar at 600 and 800 °C. In addition, there appeared to be significant diffusion of Ni from the bottom to the top surface of the film during annealing in Ar at 800 °C. Both as-deposited and annealed thin films displayed obvious room temperature ferromagnetism (RTFM) which was from metallic Ni, Ni2+ or both with two distinct mechanisms. Furthermore, a significant improvement in saturation magnetization (Ms) in the films was observed after annealing in air (Ms = 0.036 μB/Ni) or Ar (Ms = 0.033 μB/Ni) at 600 °C compared to that in as-deposited film (Ms = 0.017 μB/Ni). An even higher Ms value was observed in the film annealed in Ar at 800 °C (Ms = 0.055 μB/Ni) compared to that at 600 °C mainly due to the diffusion of Ni. The ultraviolet emission of the Ni-doped ZnO thin film was restored during annealing in Ar at 800 °C, which was also attributed to the diffusion of Ni.  相似文献   
7.
The transparent thin films of undoped, Mn-doped, and Ni-doped zinc oxide (ZnO) have been deposited on glass substrates via sol-gel technique using zinc acetate dehydrate, nickel chloride, and manganese chloride as precursors. The structural properties and morphologies of the deposited undoped and doped ZnO thin films have been investigated. X-ray diffraction (XRD) spectra, scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS) were used to examine the morphology and microstructure of the thin films. Optical properties of the thin films were determined by photoluminescence (PL) and UV/vis spectroscopy. The analyzed results indicate that the obtained films are of good crystal quality and have smooth surfaces, which have a pure hexagonal wurtzite ZnO structure without any Mn or Ni related phases. The band gap energy was estimated by Tauc's method and found to be 3.28, 3.26, and 3.34 eV for ZnO, Ni-doped ZnO, and Mn-doped ZnO thin films at room temperature, respectively. Room temperature photoluminescence is observed for the ZnO, Ni-doped ZnO, and Mn-doped ZnO thin films.  相似文献   
8.
The single crystal growth conditions and spectroscopic characterization of Ni-doped MgGa2O4 with inverse-spinel structure crystal family are described. Single crystals of this material have been grown by floating zone method. Ni-doped MgGa2O4 single crystals have broadband fluorescence in the 1100–1600 nm wavelength range, 1.6 ms room temperature lifetime, 56% quantum efficiency and stimulated emission cross section at the emission peak. This new material is very promising for tunable laser applications covering the important optical communication and eye safe wavelength region.  相似文献   
9.
Spinel LiMn2−x Ni x O4 compounds doped with a range of Ni (x=0–0.06) were synthesized by a spray-drying method. The structure and morphology characteristics of the powders were studied in detail by means of X-ray diffraction (XRD), scanning electron microscopy, and transmission electron microscopy. The XRD data reveal that all the samples have well-defined spinel structure, but, with the increase in Ni content, the doped lithium manganese spinels have smaller lattice constant. The undoped and doped spinel LiMn2O4 particles are fine, narrowly distributed, and well crystallized. The electrochemical characteristics of the samples are measured in the coin-type cells in a potential range of 3.2–4.35 V vs Li/Li+. All cyclic voltammogram curves exhibit two pairs of redox reaction peaks, but, among them, there are some differences about the peak split. With the increase in the Ni content, the specific capacities of the samples decrease slightly, but their cyclic ability increases.  相似文献   
10.
The geometrical, electronic and vibrational properties of pure (Al2O3)n (n = 9, 10, 12, 15) clusters and Ni-doped (Al2O3)9-10 clusters are investigated by density functional theory. There are four different Ni-doped (Al2O3)9 clusters and one Ni-doped (Al2O3)10 cluster taken into account. Compared with the pure clusters, the Ni-doped (Al2O3)9-10 clusters have narrower HOMO-LUMO energy gaps. The results indicate that the impurity of Ni atom is mainly responsible for the reduction of the HOMO-LUMO energy gap. One characteristic vibration band at about 1030 cm−1 is found in the vibrational frequencies of the Ni-doped (Al2O3)9-10 clusters, which is caused by the asymmetric Al-O-Al stretching vibration. Another band at around 826 cm−1 involving the characteristic vibration of Ni-O bond is in good agreement with experimental results.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号