首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
化学   15篇
  2023年   1篇
  2022年   2篇
  2020年   1篇
  2015年   1篇
  2014年   1篇
  2012年   3篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2004年   1篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
1.
Iron is one of the most microbiologically and chemically important metals in natural waters. The biogeochemical cycling of iron is significantly influenced by the redox cycling of Fe(II) and Fe(III). Because of the unique chemistry of iron, it is often needed to analyze iron at nano-molar concentrations. This article describes a reverse flow injection analysis (rFIA) based method with ferrozine spectrophotometric detection to quantify total iron concentration in stream water at nanomolar concentrations. The rFIA system has a 0.65 nM detection limit and a linear dynamic range up to 1.40 μM for the total iron analysis. The detection limit was achieved using a 1.0 m long liquid waveguide capillary flow cell, 1.50 m long knotted reaction coil, 87.50 μL injection loop and a miniature fiber optics spectrophotometer. The optimized colorimetric reagent has 1.0 mM ferrozine, 0.1 M ascorbic acid, 1.0 mM citric acid and 0.10 M acetate buffer adjusted to pH 4.0. The best sample flow rate is 2.1 mL min?1 providing a sample throughput of more than 15 samples h?1. The linear dynamic range of the method can be adjusted by changing the volume of the injection loop. The rFIA manifold was assembled exclusively from commercially available components.  相似文献   
2.
Herein, we reported the fabrication of porous iron oxide/carbon black (P–Fe2O3/CB) composite through a two-step engineering method. At first, Prussian blue microcubes were used as a precursor and further calcined to form P–Fe2O3 microcubes. The intercalation of CB nanoparticles with P–Fe2O3 nanocubes was processed through the ultrasonication method. The obtained P–Fe2O3/CB were successfully scrutinized through various physiochemical characterization methods. The proposed P–Fe2O3/CB-modified glassy carbon electrode sensor was successfully implemented in the electrochemical sensing of chlorpromazine hydrochloride due to its very low charge transfer resistance (Rct) compared to the other electrode modifiers. The sensitive detection of CPMH through differential pulse voltammetry exemplifies an excellent electroanalytical performance such as a wide linear range of 0.5–1472 μM, a lower detection limit (0.001 μM), and an appraisable sensitivity of 1.99 μA/μM cm?2 due to its availability of a high number of active sites and its large surface area, respectively. It also expresses excellent selectivity, repeatability, reproducibility, and stability results. Moreover, the practical feasibility of the as-fabricated P–Fe2O3/CB/glassy carbon electrode sensor shows exquisite recovery (98.1–100.8%) results with an appraisable current response in various biological, pharmaceutical, and environmental samples.  相似文献   
3.
《Arabian Journal of Chemistry》2020,13(12):8697-8707
A dipodal fluorescent probe 3, with imine and hydroxyl moieties as binding sites, has been synthesized and characterized with spectroscopic methods, single-crystal X-ray techniques, and DFT. The synthesized probe 3 (φ = 0.0028) showed highly sensitive and highly specific fluorescent ‘turn-on’ effect (λem = 453 nm) for the 1:1 binding with Fe3+ ions to form probe 3.Fe3+ complex (φ = 0.203) in semi-aqueous medium (acetonitrile:water (50:50; v/v)) and live cells. The 1:1 binding stoichiometry of probe 3 and Fe3+ ions was proposed by DFT calculations and confirmed by the NMR spectroscopy, crystal structures of probe 3 and 3.Fe3+ complex, and mass spectrum of probe 3.Fe3+ complex. The stability of probe 3.Fe3+ complex in a wide pH range (pH 2–12) and reversibility for binding with Fe3+ ions in the presence of EDTA indicates that it can be an effective chemosensor for the detection of Fe3+ ions in various samples, including living cells. Importantly, with the LOD of 21.5 nM for the detection of Fe3+ ions, probe 3 did not show any interference from potentially competing ions even at a 1:3 ratio, indicates its biocompatibility. The nanomolar limit of detection (21.5 nM), cell permeability, and low cytotoxicity allows the probe 3 to be an excellent tool for the live-cell imaging and detection of ferric ions in live cells.  相似文献   
4.
A novel, simple and sensitive adsorptive stripping voltammetry method was developed for simultaneous determination of Cd and Zn using N‐Nitrozo‐N‐phenylhydroxylamine (Cupferron) as a selective complexing agent. Cadmium and zinc metals gave peaks that were distinctly separated by 450–1200 mV, allowing their determination over a wide range of concentrations. The influence of pH and the nature of supporting electrolytes, concentration of ligand, preconcentration time and applied potential were investigated. The detection limits were 0.058 ng/mL for Zn and 0.092 ng/mL for Cd, and the RSD at a concentration level of 50 ppb, were 1.8–2.1 % for both zinc and cadmium, respectively. The method was applied to the determination of cadmium and zinc in blood, drug, food and water samples with the satisfactory results.  相似文献   
5.
This paper reports on investigations into interferences with the measurements of nanomolar nitrate + nitrite and soluble reactive phosphate (SRP) in oceanic surface seawater using a segmented continuous flow autoanalyser (SCFA) interfaced with a liquid-waveguide capillary flow-cell (LWCC). The interferences of silicate and arsenate with the analysis of SRP, the effect of sample filtration on the measurement of nanomolar nitrate + nitrite and SRP concentrations, and the stability of samples during storage are described.The investigation into the effect of arsenate (concentrations up to 100 nM) on phosphate analysis (concentrations up to 50 nM) indicated that the arsenate interference scaled linearly with phosphate concentrations, resulting in an overestimation of SRP concentrations of 4.6 ± 1.4% for an assumed arsenate concentration of 20 nM. The effect of added Si(OH)4 was to increase SRP signals by up to 36 ± 19 nM (at 100 μM Si(OH)4). However, at silicate concentrations below 1.5 μM, which are typically observed in oligotrophic surface ocean waters, the effect of silicate on the phosphate analysis was much smaller (≤0.78 ± 0.15 nM change in SRP). Since arsenate and silicate interferences vary between analytical approaches used for nanomolar SRP analysis, it is important that the interferences are systematically assessed in any newly developed analytical system.Filtration of surface seawater samples resulted in a decrease in concentration of 1.7-2.7 nM (±0.5 nM) SRP, and a small decrease in nitrate concentrations which was within the precision of the method (±0.6 nM). A stability study indicated that storage of very low concentration nutrient samples in the dark at 4 °C for less than 24 h resulted in no statistically significant changes in nutrient concentrations. Freezing unfiltered surface seawater samples from an oligotrophic ocean region resulted in a small but significant increase in the SRP concentration from 12.0 ± 1.3 nM (n = 3) to 14.7 ± 0.6 nM (n = 3) (Student's t-test; p = 0.021). The corresponding change in nitrate concentration was not significant (Student's t-test; p > 0.05).  相似文献   
6.
A new simple and highly selective and sensitive catalytic differential pulse voltammetry procedure for the determination of thiourea at nanomolar level is reported. Thiourea has a catalytic effect on the oxidation of Janus green by iodate in the hydrochloric acid medium. The potential was scanned in the negative direction and the differential pulse voltammograms were recorded. The variations of the peak current with hydrochloric acid concentration, oxidant, Janus green, pulse amplitude, pulse time and scan rate were optimized. Under the optimized conditions, the relationship between the peak current and concentration of thiourea was obtained. It is shown that the calibration curve is linear in the range of 0.01–6.00 µg/mL. The detection limit of the method was 0.005 µg/mL. The relative standard deviation for 6 replicate determinations of 0.01, 0.50 and 2.00 µg/mL is equal to 2.25%, 1.52% and 1.03%, respectively. The method was applied to the determination of thiourea in fruit juices with satisfactory results.  相似文献   
7.
This work presents a novel disposable electrochemical sensor for paracetamol (PCM). The sensing platform is based on graphene, manufactured via laser-scribing technology (LSG) to produce a 3D-porous structure that offers a large surface area. The analytical performances of LSG electrodes were greatly enhanced due to the high catalytic activity of graphene produced by LSG technology compared to conventional carbon electrodes. Moreover, the results showed an outstanding adsorption feature towards PCM, allowing its detection at nanomolar level from 5 nM to 100 nM through pre-concentration. The proposed sensing strategy was successfully applied for the determination of PCM in human urine samples.  相似文献   
8.
A fluorescent based receptor (4Z)-4-(4-diethylamino)-2-hydroxybenzylidene amino)-1,2dihydro-1,5-dimethyl-2-phenylpyrazol-3-one (receptor 3) was developed for the highly selective and sensitive detection of Cu2+ and Zn2+ in semi-aqueous system. The fluorescence of receptor 3 was enhanced and quenched, respectively, with the addition of Zn2+ and Cu2+ ions over other surveyed cations. The receptor formed host-guest complexes in 1:1 stoichiometry with the detection limit of 5 nM and 15 nM for Cu2+ and Zn2+ ions, respectively. Further, we have effectively utilized the two metal ions (Cu2+ and Zn2+) as chemical inputs for the manufacture of INHIBIT type logic gate at molecular level using the fluorescence responses of receptor 3 at 450 nm.  相似文献   
9.
Incorporation of long path length liquid waveguide capillary cell (LWCC or LCW) into spectrometric detection systems can increase the sensitivity of these by orders of magnitude (up to 500 times), and consequently can reduce the detection limits. The combination of the long path length spectrophotometry with flow methodologies can provide analytical solutions for various challenges in the field of environmental, biochemical and food chemistry.  相似文献   
10.
《Analytical letters》2012,45(1):156-170
In this paper we have investigated the electrochemical activity of lanthanum chloride (La (III)) in the presence of calcon carboxylic acid (CCA) using a multi-walled carbon nano tube/carbon paste electrode (CNT/CPE). The peak current increases linearly with increasing of the La (III) concentration. For this purpose, a few electrochemical methods such as cyclic, differential pulse voltammetry, linear sweep and hydrodynamic voltammetry, and chronoamperometry were used. The results show that calcon carboxylic acid as a ligand was useful for determination of La (III) and was able to improve its sensitivity. Cyclic voltammetry was used for study of reduction reaction of La (III) at the surface of modified electrode. The electrochemical parameters for La (III) at the surface of CNT/CPE, such as diffusion coefficient (D/ cm2 s ?1 = 5.26 × 10?6), the electron transfer coefficient, (α = 0. 43), and the reduction rate constant, (k/ M s?1 = 2.33 (±0.015) × 102), were determined using voltammetry methods, which with the detection limit of La (III) by differential pulse voltammetry was found to be 1.3 nM. The combination of CCA with CNT as mediators in carbon paste electrode showed that this electrode is capable, sensitive, and simple to quantify La (III) in real samples with an average recovery of 97.64%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号