首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
化学   2篇
物理学   2篇
  2011年   1篇
  2008年   2篇
  2007年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Shape and size controlled gram level synthesis of tin/indium (SnIn) alloy nanoparticles and nanobundles is reported. Poly(N-vinylpyrrolidone) (PVP) was employed as a capping agent, which could control the growth and structure of the alloy particles under varying conditions. Transmission electron microscopy showed that unique SnIn alloy nanobundles could be synthesized from the bulk materials above a certain concentration of PVP and below this concentration, discrete spherical nanoparticles of variable size were evolved. The morphology and the composition of the as-synthesized SnIn alloy nanobundles were investigated by high-resolution transmission electron microscopy (TEM). The possible mechanisms on the formation of these structures were discussed.  相似文献   
2.
Recently, considerable attention has been paid to the synthesis and research of various rare-earth (RE) doped fluoride nanomaterials because of their high refractive index and appropriate phonon energy, which have potential applications in optics, optoelectronics, microelectronics, and tribology. Many methods have been utilized to synthesize the nanomaterials of RE doped fluorides with controllable sizes, shapes, and nanostructures. Comparatively, the microwave irradiation (MWI) method is simple, fast, and unique in its potential for large-scale synthesis without suffering thermal gradient effects.  相似文献   
3.
Lenticular W18O49 nanobundles composed of ultra-thin nanowires with diameters of 5-10 nm have been synthesized through a simple solvothermal method with hexachloride as precursor and mixed cyclohexanol and ethanol as solvent. Electrochromic films were prepared by assembling the W18O49 nanobundle suspension onto tin-doped indium oxide (ITO) coated glass. Results showed that self-assembly of the W18O49 nanobundles was strongly influenced by the solvents employed to disperse the nanobundles. The W18O49 nanobundles coated films exhibited excellent electrochromic stability and reversibility. The W18O49 nanobundle films also showed much higher charge-insertion density compared with the WO3 nanorod film, which may be due to the ultrathin feature of single nanowires constituting the nanobundles, unique oxygen vacancies of monoclinic W18O49, and the highly ordered assembly of the nanobundles.  相似文献   
4.
The upconversion luminescent properties of YF3:Yb3+(20%)/Tm3+(1%) nanobundles with different sizes (240-500 nm in length) were studied under 980-nm excitation. Ultraviolet (1I6 → 3F4/3H6 and 1D2 → 3H6), blue (1D2 → 3F4 and 1G4 → 3H6), red (1D2 → 3H4, 1G4 → 3F4, and 3F3 → 3H6), and near infrared (3H4 → 3H6) emissions were observed. The results indicated that the relative intensity of the ultraviolet to the blue as well as the blue to the near infrared increased with decreasing the size of nanobundles. Especially, the position of the dominant red emission peak varied with the size of nanobundles. As the length of nanobundles increased to 500 nm, unusual 3F3 → 3H6 transition was observed, which was theoretically explained considering the decrease of the nonradiative transition rate of 3F3 → 3H4.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号